A minimization problem associated with elliptic systems of FitzHugh-Nagumo type

被引:36
作者
Dancer, EN [1 ]
Yan, SS [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2004年 / 21卷 / 02期
基金
澳大利亚研究理事会;
关键词
elliptic systems; multiple layer;
D O I
10.1016/j.anihpc.2003.02.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a minimization problem associated with the elliptic systems of FitzHugh-Nagumo type and prove that the minimizer of this minimization problem has not only a boundary layer, but also may oscillate in a set of positive measure. (C) 2003 Elsevier SAS. All rights reserved.
引用
收藏
页码:237 / 253
页数:17
相关论文
共 22 条
[1]   On a long-standing conjecture of E.!De Giorgi:: Symmetry in 3D for general nonlinearities and a local minimality property [J].
Alberti, G ;
Ambrosio, L ;
Cabré, X .
ACTA APPLICANDAE MATHEMATICAE, 2001, 65 (1-3) :9-33
[2]   Entire solutions of semilinear elliptic equations in R3 and a conjecture of De Giorgi [J].
Ambrosio, L ;
Cabré, X .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (04) :725-739
[3]  
Berestycki H., 1997, ANN SCUOLA NORM SU S, V25, P69
[4]  
BREZIS H., 1973, North-Holland Math. Stud., V5
[5]   STABILITY ANALYSIS FOR A SEMILINEAR PARABOLIC PARTIAL-DIFFERENTIAL EQUATION [J].
CHAFEE, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 15 (03) :522-540
[6]   ON A NONLINEAR EIGENVALUE PROBLEM OCCURRING IN POPULATION-GENETICS [J].
CLEMENT, P ;
PELETIER, LA .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1985, 100 :85-101
[7]  
CLEMENT P, 1987, ANN SCUOLA NORM SUP, V14, P97
[8]  
DANCER EN, 1986, P LOND MATH SOC, V53, P429
[9]  
De Giorgi E., 1978, P INT M REC METH NON, P131
[10]   A MAXIMUM PRINCIPLE FOR AN ELLIPTIC SYSTEM AND APPLICATIONS TO SEMILINEAR PROBLEMS [J].
DEFIGUEIREDO, DG ;
MITIDIERI, E .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (04) :836-849