Dimension Projection Matrix/Tree: Interactive Subspace Visual Exploration and Analysis of High Dimensional Data

被引:80
作者
Yuan, Xiaoru [1 ,2 ]
Ren, Donghao [1 ,2 ]
Wang, Zuchao [1 ,2 ]
Guo, Cong [1 ,2 ]
机构
[1] Peking Univ, Minist Educ, Key Lab Machine Percept, Beijing 100871, Peoples R China
[2] Peking Univ, Sch EECS, Beijing 100871, Peoples R China
关键词
High dimensional data; hierarchical visualization; sub-dimensional space; user interaction; subspace; tree; matrix;
D O I
10.1109/TVCG.2013.150
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For high-dimensional data, this work proposes two novel visual exploration methods to gain insights into the data aspect and the dimension aspect of the data. The first is a Dimension Projection Matrix, as an extension of a scatterplot matrix. In the matrix, each row or column represents a group of dimensions, and each cell shows a dimension projection (such as MDS) of the data with the corresponding dimensions. The second is a Dimension Projection Tree, where every node is either a dimension projection plot or a Dimension Projection Matrix. Nodes are connected with links and each child node in the tree covers a subset of the parent node's dimensions or a subset of the parent node's data items. While the tree nodes visualize the subspaces of dimensions or subsets of the data items under exploration, the matrix nodes enable cross-comparison between different combinations of subspaces. Both Dimension Projection Matrix and Dimension Project Tree can be constructed algorithmically through automation, or manually through user interaction. Our implementation enables interactions such as drilling down to explore different levels of the data, merging or splitting the subspaces to adjust the matrix, and applying brushing to select data clusters. Our method enables simultaneously exploring data correlation and dimension correlation for data with high dimensions.
引用
收藏
页码:2625 / 2633
页数:9
相关论文
共 42 条
[1]  
Aggarwal CC, 1999, SIGMOD RECORD, VOL 28, NO 2 - JUNE 1999, P61, DOI 10.1145/304181.304188
[2]  
Agrawal R., 1998, SIGMOD Record, V27, P94, DOI 10.1145/276305.276314
[3]  
[Anonymous], 2004, SIGKDD EXPLOR, DOI DOI 10.1145/1007730.1007731
[4]   THE GRAND TOUR - A TOOL FOR VIEWING MULTIDIMENSIONAL DATA [J].
ASIMOV, D .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1985, 6 (01) :128-143
[5]   Incremental multidimensional scaling method for database visualization [J].
Basalaj, W .
VISUAL DATA EXPLORATION AND ANLYSIS VI, 1999, 3643 :149-158
[6]   Subspace selection for clustering high-dimensional data [J].
Baumgartner, C ;
Plant, C ;
Kailing, K ;
Kriegel, HP ;
Kröger, P .
FOURTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2004, :11-18
[7]   BRUSHING SCATTERPLOTS [J].
BECKER, RA ;
CLEVELAND, WS .
TECHNOMETRICS, 1987, 29 (02) :127-142
[8]  
Crawfor S.L., 1990, VISUALIZATION SCI CO, P94
[9]   Pargnostics: Screen-Space Metrics for Parallel Coordinates [J].
Dasgupta, Aritra ;
Kosara, Robert .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2010, 16 (06) :1017-1026
[10]  
Elmqvist N, 2008, IEEE T VIS COMPUT GR, V14, P1141, DOI 10.1109/TVCG.2008.153