On Naturally Graded Lie and Leibniz Superalgebras

被引:3
作者
Camacho, L. M. [1 ]
Navarro, R. M. [2 ]
Sanchez, J. M. [3 ]
机构
[1] Univ Seville, Dpto Matemat Aplicada 1, Seville, Spain
[2] Univ Extremadura, Dpto Matemat, Caceres, Spain
[3] Univ Cadiz, Dpto Matemat, Campus Puerto Real, Cadiz, Spain
关键词
Lie (super)algebras; Cohomology; Deformation; Leibniz (super)algebras; Naturally graded; INFINITESIMAL DEFORMATIONS; DIMENSION LESS; NULL-FILIFORM; NILPOTENT; ALGEBRAS; CLASSIFICATION; COHOMOLOGY; VARIETIES;
D O I
10.1007/s40840-019-00876-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In general, the study of gradations has always represented a cornerstone in the study of non-associative algebras. In particular,natural gradationcan be considered to be the first and most relevant gradation of nilpotent Leibniz (resp. Lie) algebras. In fact, many families of relevant solvable Leibniz (resp. Lie) algebras have been obtained by extensions of naturally graded algebras, i.e., solvable algebras with a well-structured nilradical. Thus, the aim of this work is introducing the concept of natural gradation for Lie and Leibniz superalgebras. Moreover, after having defined naturally graded Lie and Leibniz superalgebras, we characterize natural gradations on a very important class of each of them, that is, those with maximal supernilindex.
引用
收藏
页码:3411 / 3435
页数:25
相关论文
共 34 条
[1]   Central extensions of null-filiform and naturally graded filiform non-Lie Leibniz algebras [J].
Adashev, J. K. ;
Camacho, L. M. ;
Omirov, B. A. .
JOURNAL OF ALGEBRA, 2017, 479 :461-486
[2]   On nilpotent and simple Leibniz algebras [J].
Albeverio, S ;
Ayupov, SA ;
Omirov, BA .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (01) :159-172
[3]   Varieties of nilpotent complex Leibniz algebras of dimension less than five# [J].
Albeverio, S ;
Omirov, BA ;
Rakhimov, IS .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (05) :1575-1585
[4]   ON THE CLASSIFICATION OF COMPLEX LEIBNIZ SUPERALGEBRAS WITH CHARACTERISTIC SEQUENCE (n-1, 1|m1,..., mk) AND NILINDEX n+m [J].
Albeverio, S. ;
Omirov, B. A. ;
Khudoyberdiyev, A. Kh. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2009, 8 (04) :461-475
[5]   Classification of Lie algebras with naturally graded quasi-filiform nilradicals [J].
Ancochea Bermudez, J. M. ;
Campoamor-Stursberg, R. ;
Garcia Vergnolle, L. .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (11) :2168-2186
[6]  
Ayupov SA, 1998, ALGEBRA AND OPERATOR THEORY, P1
[7]   On some classes of nilpotent Leibniz algebras [J].
Ayupov, SA ;
Omirov, BA .
SIBERIAN MATHEMATICAL JOURNAL, 2001, 42 (01) :15-24
[8]   Some deformations of nilpotent Lie superalgebras [J].
Bordemann, M. ;
Gomez, J. R. ;
Khakimdjanov, Yu. ;
Navarro, R. M. .
JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (05) :1391-1403
[9]   Classification of orbit closures of 4-dimensional complex Lie algebras [J].
Burde, D ;
Steinhoff, C .
JOURNAL OF ALGEBRA, 1999, 214 (02) :729-739
[10]  
Cabezas JM, 2005, J LIE THEORY, V15, P379