Variational integrators for forced Birkhoffian systems

被引:11
作者
Kong, Xinlei [1 ]
Wu, Huibin [1 ]
Mei, Fengxiang [2 ]
机构
[1] Beijing Inst Technol, Sch Math, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Aerosp Engn, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Variational integrator; Pfaff-Birkhoff-D'Alembert principle; Discrete forced Birkhoffian equations; STRUCTURE-PRESERVING ALGORITHMS;
D O I
10.1016/j.amc.2013.09.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this letter, we first extend the Pfaff-Birkhoff principle to include forces and obtain the Pfaff-Birkhoff-D'Alembert principle consequently. Well then motions of forced Birkhoffian systems coincide with extremals of the modified principle. Subsequently, compared with the continuous case, the discrete forced Birkhoffian equations are constructed by discretizing the Pfaff-Birkhoff-D'Alembert principle. Considered as algorithms, the discrete equations have good numerical behavior in terms of getting the correct amounts by which the energy changes over the integration process, demonstrated by the given example. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:326 / 332
页数:7
相关论文
共 16 条
[1]  
[Anonymous], 2015, ECVIM M LISB
[2]  
Birkhoff G., 1927, Dynamical Systems
[3]   Lie symmetrical perturbation and a new type of non-Noether adiabatic invariants for disturbed generalized Birkhoffian systems [J].
Jiang, Wenan ;
Li, Lin ;
Li, Zhuangjun ;
Luo, Shaokai .
NONLINEAR DYNAMICS, 2012, 67 (02) :1075-1081
[4]  
Kane C, 2000, INT J NUMER METH ENG, V49, P1295, DOI 10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.3.CO
[5]  
2-N
[6]   Structure-preserving algorithms for Birkhoffian systems [J].
Kong, Xinlei ;
Wu, Huibin ;
Mei, Fengxiang .
JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (05) :1157-1166
[7]  
Marsden JE, 2001, ACT NUMERIC, V10, P357, DOI 10.1017/S096249290100006X
[8]   Form invariance and new conserved quantity of generalised Birkhoffian system [J].
Mei Feng-Xiang ;
Wu Hui-Bin .
CHINESE PHYSICS B, 2010, 19 (05) :0503011-0503014
[9]  
MEI FX, 1993, SCI CHINA SER A, V36, P1456
[10]  
Mei FX, 2007, J BEIJING I TECHNOLO, V27, P1035