Global solvability and boundedness to a coupled chemotaxis-fluid model with arbitrary porous medium diffusion

被引:16
作者
Jin, Chunhua [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
关键词
Chemotaxis-Stokes system; Global weak solution; Uniform boundedness; Stability; SEGEL-STOKES MODEL; LOGISTIC SOURCE; BLOW-UP; SYSTEM; EXISTENCE; BEHAVIOR; AGGREGATION; SENSITIVITY; INVASION;
D O I
10.1016/j.jde.2018.02.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we deal with the following coupled chemotaxis-fluid model {n(t) + u . del n = del n(m) - del . (n(1 + n)(-alpha)del c) + gamma n - mu n(2), c(t) + u . del c = Delta c - c + n, u(t) = Delta u - del pi + n del phi, del . u = 0 in a bounded domain Omega subset of R-3 with zero-flux boundary for n, c and no-slip boundary for u. It is shown that for any large initial datum, for any m > 0, alpha > 0, the problem admits a global weak solution, which is uniformly bounded. On the basis of this, the stability of the steady states also be discussed. The study of this paper improve the results in [15], in which, the global existence and boundedness of weak solutions are established for m > 1/3, alpha > 6/5 - m. (c) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:332 / 353
页数:22
相关论文
共 31 条
[1]   On Stokes operators with variable viscosity in bounded and unbounded domains [J].
Abels, Helmut ;
Terasawa, Yutaka .
MATHEMATISCHE ANNALEN, 2009, 344 (02) :381-429
[2]  
Corrias L., 2004, Milan J. Math., V72, P1, DOI DOI 10.1007/s00032-003-0026-x
[3]   Optimal critical mass in the two dimensional Keller-Segel model in R2 [J].
Dolbeault, J ;
Perthame, B .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (09) :611-616
[4]   Global behaviour of a reaction-diffusion system modelling chemotaxis [J].
Gajewski, H ;
Zacharias, K .
MATHEMATISCHE NACHRICHTEN, 1998, 195 :77-114
[5]   Convergence rate estimates of solutions in a higher dimensional chemotaxis system with logistic source [J].
He, Xiao ;
Zheng, Sining .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (02) :970-982
[6]   Finite-time aggregation into a single point in a reaction-diffusion system [J].
Herrero, MA ;
Medina, E ;
Velazquez, JJL .
NONLINEARITY, 1997, 10 (06) :1739-1754
[7]  
Ilyin AA, 2009, FUNCT ANAL APPL+, V43, P254, DOI 10.4213/faa2962
[8]  
Jin C., PREPRINT
[9]   BOUNDEDNESS AND GLOBAL SOLVABILITY TO A CHEMOTAXIS-HAPTOTAXIS MODEL WITH SLOW AND FAST DIFFUSION [J].
Jin, Chunhua .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (04) :1675-1688
[10]   INITIATION OF SLIME MOLD AGGREGATION VIEWED AS AN INSTABILITY [J].
KELLER, EF ;
SEGEL, LA .
JOURNAL OF THEORETICAL BIOLOGY, 1970, 26 (03) :399-&