Retrieval of Forest Canopy Parameters by Inversion of the PROFLAIR Leaf-Canopy Reflectance Model Using the LUT Approach

被引:23
作者
Omari, Khalid [1 ]
White, H. Peter [2 ]
Staenz, Karl [3 ]
King, Douglas J. [4 ]
机构
[1] Univ Ottawa, Dept Earth Sci, Ottawa Carleton Geosci Ctr, Ottawa, ON K1N 6N5, Canada
[2] Nat Resources Canada, Canada Ctr Remote Sensing, Ottawa, ON, Canada
[3] Univ Lethbridge, Dept Geog, ATIC, Lethbridge, AB T1K 3M4, Canada
[4] Carleton Univ, Dept Geog & Environm Studies, Ottawa, ON K1S 5B6, Canada
关键词
Environmental remediation; hyperspectral imaging; vegetation mapping; RADIATIVE-TRANSFER MODELS; CHLOROPHYLL CONTENT; AREA INDEX; PLANT CANOPIES; NITROGEN; HYPERION; CALIBRATION; SCATTERING; PROSPECT; FRACTION;
D O I
10.1109/JSTARS.2013.2240264
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The potential of simulating broad leaf forest canopy spectral reflectance using a canopy-leaf PROFLAIR (PROSPECT + FLAIR) model was investigated in this study. The model was inverted with hyperspectral Hyperion data using a look up table (LUT) approach to retrieve canopy leaf area index (LAI), leaf chlorophyll content (Ca+b) and canopy integrated chlorophyll content (LAI x Ca+b). The LUT was populated by simulating the model in forward mode using a space of realization generated based on the specific distribution of the input parameters and based on a priori information from the field. The estimated variables were then compared to ground measurements collected in the field. The results showed the ability of the PROFLAIR model to realistically simulate canopy spectral reflectance. When compared to ground measurements, the model showed a reasonable performance to retrieve canopy LAI with an RMSE of 0.47 and leaf chlorophyll content with an RMSE of 4.46 mu g/cm(2).
引用
收藏
页码:715 / 723
页数:9
相关论文
共 55 条
[1]  
[Anonymous], 2004, J GEOPHYS RES ATMOS, DOI DOI 10.1029/2003JD004252
[2]   Neural network estimation of LAI, fAPAR, fCover and LAIxCab, from top of canopy MERIS reflectance data:: Principles and validation [J].
Bacour, C. ;
Baret, F. ;
Beal, D. ;
Weiss, M. ;
Pavageau, K. .
REMOTE SENSING OF ENVIRONMENT, 2006, 105 (04) :313-325
[3]   THE ROBUSTNESS OF CANOPY GAP FRACTION ESTIMATES FROM RED AND NEAR-INFRARED REFLECTANCES - A COMPARISON OF APPROACHES [J].
BARET, F ;
CLEVERS, JGPW ;
STEVEN, MD .
REMOTE SENSING OF ENVIRONMENT, 1995, 54 (02) :141-151
[4]  
CARTER GA, 1994, INT J REMOTE SENS, V15, P697, DOI 10.1080/01431169408954109
[5]   A four-scale bidirectional reflectance model based on canopy architecture [J].
Chen, JM ;
Leblanc, SG .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1997, 35 (05) :1316-1337
[6]   Using Hyperspectral Remote Sensing Data for Retrieving Canopy Chlorophyll and Nitrogen Content [J].
Clevers, Jan G. P. W. ;
Kooistra, Lammert .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :574-583
[7]   Retrieval of canopy biophysical variables from bidirectional reflectance -: Using prior information to solve the ill-posed inverse problem [J].
Combal, B ;
Baret, F ;
Weiss, M ;
Trubuil, A ;
Macé, D ;
Pragnère, A ;
Myneni, R ;
Knyazikhin, Y ;
Wang, L .
REMOTE SENSING OF ENVIRONMENT, 2003, 84 (01) :1-15
[8]   Prediction of eucalypt foliage nitrogen content from satellite-derived hyperspectral data [J].
Coops, NC ;
Smith, ML ;
Martin, ME ;
Ollinger, SV .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (06) :1338-1346
[9]   Temporal analysis of forest structural condition at an acid mine site using multispectral digital camera imagery [J].
Cosmopoulos, P ;
King, DJ .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (12) :2259-2275
[10]   Remote sensing the biochemical composition of a slash pine canopy [J].
Curran, PJ ;
Kupiec, JA ;
Smith, GM .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1997, 35 (02) :415-420