The linear θ method for 2-D elastodynamic BE analysis

被引:10
|
作者
Yu, G
Mansur, WJ
Carrer, JAM
机构
[1] Univ Fed Rio de Janeiro, COPPE, Dept Civil Engn, BR-21945970 Rio De Janeiro, Brazil
[2] Tianjin Univ, Dept Ocean Engn, Tianjin 300072, Peoples R China
关键词
D O I
10.1007/s004660050440
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A linear theta method is used here to solve 2-D elastodynamic problems. Linear time and space interpolation functions are used, and expressions for the computation of stresses at internal points by means of appropriate integral equations are presented. When compared with the standard point collocation procedure, the linear theta method is more stable for 2-D elastodynamic problems, with an equivalent computer cost. As the linear theta method presents more numerical damping than the standard approach, special attention is required when either theta or the time step length is large. Two examples are presented in order to verify the accuracy of the proposed formulation.
引用
收藏
页码:82 / 89
页数:8
相关论文
共 50 条
  • [1] The linear θ method for 2-D elastodynamic BE analysis
    G. Yu
    W. J. Mansur
    J. A. M. Carrer
    Computational Mechanics, 1999, 24 : 82 - 89
  • [2] Finite element method and boundary element method iterative coupling algorithm for 2-D elastodynamic analysis
    Duofa Ji
    Weidong Lei
    Zhijian Liu
    Computational and Applied Mathematics, 2020, 39
  • [3] Finite element method and boundary element method iterative coupling algorithm for 2-D elastodynamic analysis
    Ji, Duofa
    Lei, Weidong
    Liu, Zhijian
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):
  • [4] Stability analysis of linear 2-D systems
    Liu, Tao
    SIGNAL PROCESSING, 2008, 88 (08) : 2078 - 2084
  • [5] A Galerkin Method for the Simulation of the Transient 2-D/2-D and 3-D/3-D Linear Boltzmann Equation
    Matthias K. Gobbert
    Samuel G. Webster
    Timothy S. Cale
    Journal of Scientific Computing, 2007, 30 : 237 - 273
  • [6] A Galerkin method for the simulation of the transient 2-D/2-D and 3-D/3-D linear Boltzmann equation
    Gobbert, Matthias K.
    Webster, Samuel G.
    Cale, Timothy S.
    JOURNAL OF SCIENTIFIC COMPUTING, 2007, 30 (02) : 237 - 273
  • [7] Generalized finite integration method for 2D elastostatic and elastodynamic analysis
    Shi, C. Z.
    Zheng, H.
    Hon, Y. C.
    Wen, P. H.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 220 : 580 - 594
  • [8] A semi-analytic method for solving some 2-D elastodynamic problems in semi-infinite media
    Golubchick, A.
    Altus, E.
    Computational Mechanics, 24 (04): : 268 - 272
  • [9] A semi-analytic method for solving some 2-D elastodynamic problems in semi-infinite media
    A. Golubchick
    E. Altus
    Computational Mechanics, 1999, 24 : 268 - 272
  • [10] A semi-analytic method for solving some 2-D elastodynamic problems in semi-infinite media
    Golubchick, A
    Altus, E
    COMPUTATIONAL MECHANICS, 1999, 24 (04) : 268 - 272