Semiconductor quantum-wires and nano-wires for optoelectronic applications

被引:5
|
作者
Weman, H. [1 ]
Palmgren, S. [2 ]
Karlsson, K. F. [2 ]
Rudra, A. [2 ]
Kapon, E. [2 ]
Dheeraj, D. L. [1 ]
Fimland, B. O. [1 ]
Harmand, J. C. [3 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Elect & Telecommun, N-7491 Trondheim, Norway
[2] Ecole Polytech Fed Lausanne, Lab Phys Nanostruct, CH-1015 Lausanne, Switzerland
[3] CNRS, Lab Photon & Nanostruct, Route Nozay, F-91460 Marcoussis, France
关键词
MOLECULAR-BEAM EPITAXY; ENERGY-TRANSFER; WELLS; SPECTRA; GROWTH;
D O I
10.1007/s10854-007-9456-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Exciton transfer between two parallel GaAs V-groove quantum wires (QWRs) or two planar quantum wells (QWs) separated by AlGaAs barriers ranging from 5.5 nm to 20 nm thickness is studied by photoluminescence (PL) and PL excitation (PLE) spectroscopy. It is found that the transfer is strongly reduced between the widely spaced QWRs as compared with QWs. We have also investigated the optical absorption in single QWRs embedded in an AlGaAs V-shaped channel waveguide. Using a combination of PLE and absorption measurements we construct the full dependence of absorption spectra on the linear polarization. Our studies reveal the importance of inter-subband mixing in determining the energies of the light-hole-like transitions and thus the QWR absorption. Finally we present recent results on the fabrication and structural characterization of GaAs and GaP nanowires (NWs) grown by molecular beam epitaxy (MBE) on GaAs(111)B and Si(111) substrates, using Au-catalyzed vapor-liquid-solid growth technique. It is shown that, apart from optimizing the NW growth parameters, substrate material and the procedure for preparing the substrate before the MBE growth play an important role in controlling the NWs.
引用
收藏
页码:94 / 101
页数:8
相关论文
共 50 条
  • [1] Semiconductor quantum-wires and nano-wires for optoelectronic applications
    H. Weman
    S. Palmgren
    K. F. Karlsson
    A. Rudra
    E. Kapon
    D. L. Dheeraj
    B. O. Fimland
    J. C. Harmand
    Journal of Materials Science: Materials in Electronics, 2009, 20 : 94 - 101
  • [2] Quantum dot in zinc oxide - Nano-wires
    不详
    PRAKTISCHE METALLOGRAPHIE-PRACTICAL METALLOGRAPHY, 2008, 45 (05): : 251 - 251
  • [3] Homogenization and Applications of Ferromagnetic Nano-wires based Metamaterials
    Wang, Jue
    Peng, Zhen
    Lee, Jin-Fa
    2013 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2013, : 1192 - 1193
  • [4] Conductance in magnetic nano-wires
    Naito, Y
    Itoh, H
    Inoue, J
    SURFACE SCIENCE, 2001, 493 (1-3) : 591 - 596
  • [5] Bandgap narrowing in nano-wires
    Nozari, K
    Madadi, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2006, 17 (02): : 167 - 185
  • [6] Growth and characterization of InGaAs quantum-wires
    Wehmann, HH
    Schrimpf, T
    Bonsch, P
    Wullner, D
    Piester, D
    Schlachetzki, A
    Lacmann, R
    HETEROSTRUCTURE EPITAXY AND DEVICES: HEAD '97, 1998, 48 : 199 - 202
  • [7] Plasmon-optical phonon hybridization in polar semiconductor nano-wires
    Moradi, Afshin
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2013, 28 (12)
  • [8] Elongation Method for Delocalized Nano-wires
    Aoki, Yuriko
    Gu, Feng Long
    PROGRESS IN CHEMISTRY, 2012, 24 (06) : 886 - 909
  • [9] Polyaniline nano-wires and nano-networks.
    Langer, JJ
    Framski, G
    Joachimiak, R
    SYNTHETIC METALS, 2001, 121 (1-3) : 1281 - 1282
  • [10] Resistance increase in metal nano-wires
    Chen, Hsueh-Chung
    Chen, Hsien-Wei
    Jeng, Shin-Puu
    Wu, Chii-Ming M.
    Sun, Jack Y. -C.
    2006 INTERNATIONAL SYMPOSIUM ON VLSI TECHNOLOGY, SYSTEMS, AND APPLICATIONS (VLSI-TSA), PROCEEDINGS OF TECHNICAL PAPERS, 2006, : 129 - +