On ve-degrees and ev-degrees in graphs

被引:83
作者
Chellali, Mustapha [1 ]
Haynes, Teresa W. [2 ,3 ]
Hedetniemi, Stephen T. [4 ]
Lewis, Thomas M. [5 ]
机构
[1] Univ Blida, Dept Math, LAMDA RO Lab, BP 270, Blida, Algeria
[2] East Tennessee State Univ, Dept Math, Johnson City, TN 37614 USA
[3] Univ Johannesburg, Dept Math, Auckland Pk, South Africa
[4] Clemson Univ, Sch Comp, Clemson, SC 29634 USA
[5] Furman Univ, Dept Math, Greenville, SC 29613 USA
关键词
Vertex; Degree; Regular graph; Irregular graph; Vertex-edge domination; Edge-vertex domination; Vertex-edge degree; Edge-vertex degree; VERTEX-EDGE DOMINATION; MOLECULAR-ORBITALS;
D O I
10.1016/j.disc.2016.07.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a graph with vertex set V and edge set E. A vertex v is an element of V ve-dominates every edge incident to it as well as every edge adjacent to these incident edges. The vertex edge degree of a vertex v is the number of edges ve-dominated by v. Similarly, an edge e = uv ev-dominates the two vertices u and v incident to it, as well as every vertex adjacent to u or v. The edge vertex degree of an edge e is the number of vertices ev-dominated by edge e. In this paper we introduce these types of degrees and study their properties. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 38
页数:8
相关论文
共 14 条
[1]  
Aigner M., 2004, PROOFS BOOK
[2]   HIGHLY IRREGULAR GRAPHS [J].
ALAVI, Y ;
CHARTRAND, G ;
CHUNG, FRK ;
ERDOS, P ;
GRAHAM, RL ;
OELLERMANN, OR .
JOURNAL OF GRAPH THEORY, 1987, 11 (02) :235-249
[3]  
[Anonymous], 2007, THESIS
[4]   NO GRAPH IS PERFECT [J].
BEHZAD, M ;
CHARTRAN.G .
AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (08) :962-&
[5]   Vertex-edge domination in graphs [J].
Boutrig, Razika ;
Chellali, Mustapha ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. .
AEQUATIONES MATHEMATICAE, 2016, 90 (02) :355-366
[6]   An upper bound on the sum of squares of degrees in a graph [J].
de Caen, D .
DISCRETE MATHEMATICS, 1998, 185 (1-3) :245-248
[7]  
Gutman I, 2004, MATCH-COMMUN MATH CO, P83
[8]   GRAPH THEORY AND MOLECULAR-ORBITALS - TOTAL PI-ELECTRON ENERGY OF ALTERNANT HYDROCARBONS [J].
GUTMAN, I ;
TRINAJSTIC, N .
CHEMICAL PHYSICS LETTERS, 1972, 17 (04) :535-538
[9]   GRAPH THEORY AND MOLECULAR-ORBITALS .12. ACYCLIC POLYENES [J].
GUTMAN, I ;
RUSCIC, B ;
TRINAJSTIC, N ;
WILCOX, CF .
JOURNAL OF CHEMICAL PHYSICS, 1975, 62 (09) :3399-3405
[10]  
Lewis J, 2010, UTILITAS MATHEMATICA, V81, P193