New conditions for the convergence of Newton-like methods and applications

被引:1
作者
Argyros, Ioannis K. [1 ]
Hilout, Said [2 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[2] Univ Poitiers, Lab Math & Applicat, F-86962 Futuroscope, France
关键词
Newton-like method; Banach space; Lipschitz condition; Majorizing sequences; Semilocal convergence; ITERATIVE METHODS; EQUATIONS; ACCESSIBILITY; THEOREM;
D O I
10.1016/j.amc.2012.10.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Newton-like method methods are often used for solving nonlinear equations in a Banach space setting. Using more precise majorizing sequences, we provide a tighter convergence analysis than in earlier studies such as [4,6,9,13,17-22,31-35,38-44]. Our results are illustrated by several numerical examples, for which older convergence conditions do not hold but for which our convergence criteria are satisfied. Published by Elsevier Inc.
引用
收藏
页码:3279 / 3289
页数:11
相关论文
共 40 条
[1]   On the global convergence of Chebyshev's iterative method [J].
Amat, S. ;
Busquier, S. ;
Gutierrez, J. M. ;
Hernandez, M. A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 220 (1-2) :17-21
[2]  
[Anonymous], 1971, Nonlinear functional analysis and applications
[3]  
Argyros I. K., 1999, COMPUT ANAL APPL, V1, P87
[4]  
Argyros I.K., 2011, ADV NONLINEAR VAR IN, V14, P75
[5]  
Argyros I.K., 2009, SURVEYS MATH APPL, V4, P119
[6]  
Argyros I.K., 1993, The Theory and Application of Iteration Methods
[7]  
Argyros I. K., 2011, MATH MODELLING APPL
[8]  
Argyros I.K., 2012, Numerical Methods for Equations and Its Applications
[9]  
Argyros I. K., 2009, EFFICIENT METHODS SO
[10]  
Argyros I. K., 2007, STUD COMPUT MATH, V15