Biharmonic Submanifolds in a Riemannian Manifold with Non-Positive Curvature

被引:40
作者
Nakauchi, Nobumitsu [1 ]
Urakawa, Hajime [2 ]
机构
[1] Yamaguchi Univ, Grad Sch Sci & Engn, Yamaguchi 7538512, Japan
[2] Tohoku Univ, Grad Sch Informat Sci, Div Math, Sendai, Miyagi 9808579, Japan
基金
日本学术振兴会;
关键词
Harmonic map; Biharmonic map; Isometric immersion; Minimal; Non-positive curvature;
D O I
10.1007/s00025-011-0209-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that, for every biharmonic submanifold (M, g) of a Riemannian manifold (N, h) with non-positive sectional curvature, if , then (M, g) is minimal in (N, h), i.e., , where eta is the mean curvature tensor field of (M, g) in (N, h). This result gives an affirmative answer under the condition to the following generalized Chen's conjecture: every biharmonic submanifold of a Riemannian manifold with non-positive sectional curvature must be minimal. The conjecture turned out false in case of an incomplete Riemannian manifold (M, g) by a counter example of Ou and Tang (in The generalized Chen's conjecture on biharmonic sub-manifolds is false, a preprint, 2010).
引用
收藏
页码:467 / 474
页数:8
相关论文
共 13 条
[1]  
[Anonymous], 2001, Contemp. Math.
[2]  
[Anonymous], IASI
[3]  
[Anonymous], 1996, Soochow J. Math.
[4]   Biharmonic submanifolds of S3 [J].
Caddeo, R ;
Montaldo, S ;
Oniciuc, C .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (08) :867-876
[5]  
Chen B.-Y., 1991, Soochow J. Math., V17, P169
[6]  
Eells J., 1983, CMMS REGIONAL C SERI, V50
[7]  
Helgason S., 1962, Differential Geometry and Symmetric Spaces
[8]  
Kobayashi S., 1969, Foundations of Differential Geometry, VII
[9]  
Kobayashi S., 1963, Foundations of Differential Geometry, VI
[10]   Biharmonic hypersurfaces in a Riemannian manifold with non-positive Ricci curvature [J].
Nakauchi, Nobumitsu ;
Urakawa, Hajime .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2011, 40 (02) :125-131