SUPERCONVERGENCE OF DISCONTINUOUS GALERKIN METHODS FOR TWO-DIMENSIONAL HYPERBOLIC EQUATIONS

被引:49
作者
Cao, Waixiang [1 ]
Shu, Chi-Wang [2 ]
Yang, Yang [3 ]
Zhang, Zhimin [1 ,4 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[3] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
[4] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
discontinuous Galerkin method; superconvergence; hyperbolic equations; Radau points; cell averages; initial and boundary discretizations; FINITE-VOLUME METHODS; ERROR ESTIMATION; ELEMENT SOLUTIONS; POINTS; 2K-CONJECTURE;
D O I
10.1137/140996203
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with superconvergence properties of discontinuous Galerkin (DG) methods for two-dimensional linear hyperbolic conservation laws over rectangular meshes when upwind fluxes are used. We prove, under some suitable initial and boundary discretizations, the (2k + 1)th order superconvergence rate of the DG approximation at the downwind points and for the cell averages, when piecewise tensor-product polynomials of degree k are used. Moreover, we prove that the gradient of the DG solution is superconvergent with a rate of (k + 1)th order at all interior left Radau points; and the function value approximation is superconvergent at all right Radau points with a rate of (k + 2)th order. Numerical experiments indicate that the aforementioned superconvergence rates are sharp.
引用
收藏
页码:1651 / 1671
页数:21
相关论文
共 38 条
[1]   A posteriori discontinuous finite element error estimation for two-dimensional hyperbolic problems [J].
Adjerid, S ;
Massey, TC .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (51-52) :5877-5897
[2]   The discontinuous galerkin method for two-dimensional hyperbolic problems. Part I: Superconvergence error analysis [J].
Adjerid, Slimane ;
Baccouch, Mahboub .
JOURNAL OF SCIENTIFIC COMPUTING, 2007, 33 (01) :75-113
[3]   Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem [J].
Adjerid, Slimane ;
Massey, Thomas C. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (25-28) :3331-3346
[4]   DISCONTINUOUS GALERKIN ERROR ESTIMATION FOR LINEAR SYMMETRIZABLE HYPERBOLIC SYSTEMS [J].
Adjerid, Slimane ;
Weinhart, Thomas .
MATHEMATICS OF COMPUTATION, 2011, 80 (275) :1335-1367
[5]   Discontinuous Galerkin error estimation for linear symmetric hyperbolic systems [J].
Adjerid, Slimane ;
Weinhart, Thomas .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (37-40) :3113-3129
[6]   The Discontinuous Galerkin Method for Two-dimensional Hyperbolic Problems Part II: A Posteriori Error Estimation [J].
Adjerid, Slimane ;
Baccouch, Mahboub .
JOURNAL OF SCIENTIFIC COMPUTING, 2009, 38 (01) :15-49
[7]  
[Anonymous], 1995, Lecture Notes in Mathematics
[8]  
Babuska I., 1996, Numer. Methods Partial Differential Equations, V12, P347
[9]  
Bramble J., 1997, MATH COMPUT, V31, P94, DOI DOI 10.1090/S0025-5718-1977-0431744-90353.65064
[10]  
CAI ZQ, 1991, NUMER MATH, V58, P713