Risk Classification in Mild Cognitive Impairment Patients for Developing Alzheimer's Disease

被引:22
作者
Zhou, Bin [1 ]
Nakatani, Eiji [2 ]
Teramukai, Satoshi [2 ]
Nagai, Yoji
Fukushima, Masanori
机构
[1] Fdn Biomed Res & Innovat, Translat Res Informat Ctr, Chuo Ku, Kobe, Hyogo 6500047, Japan
[2] Kyoto Univ Hosp, Translat Res Ctr, Dept Clin Trial Design & Management, Kyoto 606, Japan
基金
美国国家卫生研究院;
关键词
Alzheimer's disease; conversion; mild cognitive impairment; risk classification; HUMAN CEREBRAL-CORTEX; ASSOCIATION WORKGROUPS; DIAGNOSTIC GUIDELINES; NATIONAL INSTITUTE; STRUCTURAL MRI; BRAIN ATROPHY; BIOMARKERS; DEMENTIA; RECOMMENDATIONS; MODELS;
D O I
10.3233/JAD-2012-112117
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The objective of this study was to develop new risk classifications for conversion to Alzheimer's disease (AD) by comparing the relative reliability of classifiers in patients with mild cognitive impairment (MCI). The 397 MCI subjects and all baseline data, including characteristics, neuropsychological tests, cerebrospinal fluid biomarkers and MRI findings in Alzheimer's Disease Neuroimaging Initiative (ADNI), were used for analysis by Cox proportional hazard regression, bootstrap sampling, and c-index. Multivariate Cox regression analysis revealed the following factors to be associated with increased risk of conversion from MCI to AD during the 53-month follow-up period: AVLT 30-minute delayed recall, AVLT trial 1, Boston naming, logical delayed recall, trail-making B, CDR-sob, ADAS13, the cortical thickness of the right inferior temporal lobe (st91ta), and the left hippocampus volume. The combinations of ADAS13 at a cutoff point of 15.67 with CDR-sob at 1.5 or with the cortical thickness of the right inferior temporal lobe at 2.56 mm(3) produced high conversion rates of 92.7% (82.4%-100.0%) and 88.8% (77.3%-100.0%), respectively, at 48 months. The discriminative ability based on c-index for the proposed combination was 0.68. The sample size was estimated as 504 in the group with a combination of ADAS13 and CDR-sob whose conversion rate is highest. The combination of ADAS13 with CDR-sob at an optimal cutoff point has a high reliability in classifying the MCI patients into high-and low-risk conversion to AD and will be benefit for patients' assessment and potentially facilitate the clinical development of novel therapeutics.
引用
收藏
页码:367 / 375
页数:9
相关论文
共 30 条
[1]   The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease [J].
Albert, Marilyn S. ;
DeKosky, Steven T. ;
Dickson, Dennis ;
Dubois, Bruno ;
Feldman, Howard H. ;
Fox, Nick C. ;
Gamst, Anthony ;
Holtzman, David M. ;
Jagust, William J. ;
Petersen, Ronald C. ;
Snyder, Peter J. ;
Carrillo, Maria C. ;
Thies, Bill ;
Phelps, Creighton H. .
ALZHEIMERS & DEMENTIA, 2011, 7 (03) :270-279
[2]   Redox Proteomics Analysis of Brains from Subjects with Amnestic Mild Cognitive Impairment Compared to Brains from Subjects with Preclinical Alzheimer's Disease: Insights into Memory Loss in MCI [J].
Aluise, Christopher D. ;
Robinson, Rena A. S. ;
Cai, Jian ;
Pierce, William M. ;
Markesbery, William R. ;
Butterfield, D. Allan .
JOURNAL OF ALZHEIMERS DISEASE, 2011, 23 (02) :257-269
[3]  
COX DR, 1972, J R STAT SOC B, V34, P187
[4]   Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification [J].
Davatzikos, Christos ;
Bhatt, Priyanka ;
Shaw, Leslie M. ;
Batmanghelich, Kayhan N. ;
Trojanowski, John Q. .
NEUROBIOLOGY OF AGING, 2011, 32 (12) :2322.e19-2322.e27
[5]   An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest [J].
Desikan, Rahul S. ;
Segonne, Florent ;
Fischl, Bruce ;
Quinn, Brian T. ;
Dickerson, Bradford C. ;
Blacker, Deborah ;
Buckner, Randy L. ;
Dale, Anders M. ;
Maguire, R. Paul ;
Hyman, Bradley T. ;
Albert, Marilyn S. ;
Killiany, Ronald J. .
NEUROIMAGE, 2006, 31 (03) :968-980
[6]   Prediction of conversion from mild cognitive impairment to Alzheimer's disease dementia based upon biomarkers and neuropsychological test performance [J].
Ewers, Michael ;
Walsh, Cathal ;
Trojanowski, John Q. ;
Shaw, Leslie M. ;
Petersen, Ronald C. ;
Jack, Clifford R., Jr. ;
Feldman, Howard H. ;
Bokde, Arun L. W. ;
Alexander, Gene E. ;
Scheltens, Philip ;
Vellas, Bruno ;
Dubois, Bruno ;
Weiner, Michael ;
Hampel, Harald .
NEUROBIOLOGY OF AGING, 2012, 33 (07) :1203-+
[7]   Decreased Cerebrospinal Fluid Aβ42 Correlates with Brain Atrophy in Cognitively Normal Elderly [J].
Fagan, Anne M. ;
Head, Denise ;
Shah, Aarti R. ;
Marcus, Daniel ;
Mintun, Mark ;
Morris, John C. ;
Holtzman, David M. .
ANNALS OF NEUROLOGY, 2009, 65 (02) :176-183
[8]   Structural MRI Biomarkers for Preclinical and Mild Alzheimer's Disease [J].
Fennema-Notestine, Christine ;
Hagler, Donald J., Jr. ;
McEvoy, Linda K. ;
Fleisher, Adam S. ;
Wu, Elaine H. ;
Karow, David S. ;
Dale, Anders M. .
HUMAN BRAIN MAPPING, 2009, 30 (10) :3238-3253
[9]   Global prevalence of dementia: a Delphi consensus study [J].
Ferri, CP ;
Prince, M ;
Brayne, C ;
Brodaty, H ;
Fratiglioni, L ;
Ganguli, M ;
Hall, K ;
Hasegawa, K ;
Hendrie, H ;
Huang, YQ ;
Jorm, A ;
Mathers, C ;
Menezes, PR ;
Rimmer, E ;
Scazufca, M .
LANCET, 2005, 366 (9503) :2112-2117
[10]   Cortical surface-based analysis - II: Inflation, flattening, and a surface-based coordinate system [J].
Fischl, B ;
Sereno, MI ;
Dale, AM .
NEUROIMAGE, 1999, 9 (02) :195-207