A localization theorem and boundary regularity for a class of degenerate Monge-Ampere equations

被引:28
作者
Savin, Ovidiu [1 ]
机构
[1] Columbia Univ, New York, NY 10027 USA
关键词
DIRICHLET PROBLEM;
D O I
10.1016/j.jde.2013.08.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider degenerate Monge Ampere equations of the type det D(2)u = f in Omega, f similar to d(partial derivative Omega)(alpha) near partial derivative Omega, where d(partial derivative Omega) represents the distance to the boundary of the domain Omega and alpha > 0 is a positive power. We obtain C-2 estimates at the boundary under natural conditions on the boundary data and the right-hand side. Similar estimates in two dimensions were obtained by J.X. Hong, G. Huang and W. Wang in [3]. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:327 / 388
页数:62
相关论文
共 10 条
[1]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .1. MONGE-AMPERE EQUATION [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (03) :369-402
[2]   Boundary regularity of maps with convex potentials .2. [J].
Caffarelli, LA .
ANNALS OF MATHEMATICS, 1996, 144 (03) :453-496
[3]   Existence of Global Smooth Solutions to Dirichlet Problem for Degenerate Elliptic Monge-Ampere Equations [J].
Hong, Jiaxing ;
Huang, Genggeng ;
Wang, Weiye .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (04) :635-656
[4]  
IVOCHKINA N. M., 1980, ZAP NAUCHN SEM LENIN, V96, P69
[5]  
Krylov NV., 1983, Izv. Akad. Nauk SSSR Ser. Mat, V47, P75
[6]   2 REMARKS ON MONGE-AMPERE EQUATIONS [J].
LIONS, PL .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1985, 142 :263-275
[7]   The obstacle problem for Monge Ampere equation [J].
Savin, O .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 22 (03) :303-320
[8]  
Savin O, 2013, J AM MATH SOC, V26, P63
[9]   Boundary regularity for the Monge-Ampere and affine maximal surface equations [J].
Trudinger, Neil S. ;
Wang, Xu-Jia .
ANNALS OF MATHEMATICS, 2008, 167 (03) :993-1028
[10]  
Wang XJ., 1996, Analysis, V16, P101, DOI [10.1524/anly.1996.16.1.101, DOI 10.1524/ANLY.1996.16.1.101]