Transport functions for hypercubic and Bethe lattices

被引:19
作者
Arsenault, Louis-Francois [1 ,2 ]
Tremblay, A-M S. [1 ,2 ,3 ]
机构
[1] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada
[2] Univ Sherbrooke, RQMP, Sherbrooke, PQ J1K 2R1, Canada
[3] Canadian Inst Adv Res, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
MEAN-FIELD THEORY; HUBBARD-MODEL; INFINITE DIMENSIONS; CONDUCTIVITY; FERMIONS;
D O I
10.1103/PhysRevB.88.205109
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In calculations of transport quantities, such as the electrical conductivity, thermal conductivity, Seebeck, Peltier, Nernst, Ettingshausen, Righi-Leduc, or Hall coefficients, sums over the Brillouin zone of wave-vector derivatives of the dispersion relation commonly appear. When the self-energy depends only on frequency, as in single-site dynamical mean-field theory, it is advantageous to perform these sums once and for all. We show here that in the case of a hypercubic lattice in d dimensions, the sums needed for any of the transport coefficients can be expressed as integrals over powers of the energy weighted by the energy-dependent noninteracting density of states. It is also shown that our exact expressions for the transport functions can be obtained from differential equations that follow from sum rules. By substituting the Bethe lattice density of states, one can obtain the previously unknown transport function for the electrical or thermal Hall coefficients and for the Nernst coefficient of the Bethe lattice.
引用
收藏
页数:10
相关论文
共 32 条
[1]  
[Anonymous], 1979, ELECT PHONONS THEORY
[2]  
Arsenault L.-F., 2013, THESIS U SHERBROOKE
[3]   Entropy, frustration, and large thermopower of doped Mott insulators on the fcc lattice [J].
Arsenault, Louis-Francois ;
Shastry, B. Sriram ;
Semon, Patrick ;
Tremblay, A. -M. S. .
PHYSICAL REVIEW B, 2013, 87 (03)
[4]   Benchmark of a modified iterated perturbation theory approach on the fcc lattice at strong coupling [J].
Arsenault, Louis-Francois ;
Semon, Patrick ;
Tremblay, A. -M. S. .
PHYSICAL REVIEW B, 2012, 86 (08)
[5]   Transport in the metallic regime of Mn-doped III-V semiconductors [J].
Arsenault, Louis-Francois ;
Movaghar, B. ;
Desjardins, P. ;
Yelon, A. .
PHYSICAL REVIEW B, 2008, 77 (11)
[6]   Optical spectral weights and the ferromagnetic transition temperature of colossal-magnetoresistance manganites: Relevance of double exchange to real materials [J].
Chattopadhyay, A ;
Millis, AJ ;
Das Sarma, S .
PHYSICAL REVIEW B, 2000, 61 (16) :10738-10749
[7]   Charge-transfer metal-insulator transitions in the spin-1/2 Falicov-Kimball model [J].
Chung, W ;
Freericks, JK .
PHYSICAL REVIEW B, 1998, 57 (19) :11955-11961
[8]   How Bad Metals Turn Good: Spectroscopic Signatures of Resilient Quasiparticles [J].
Deng, Xiaoyu ;
Mravlje, Jernej ;
Zitko, Rok ;
Ferrero, Michel ;
Kotliar, Gabriel ;
Georges, Antoine .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)
[9]   Sum rule for the optical hall angle [J].
Drew, HD ;
Coleman, P .
PHYSICAL REVIEW LETTERS, 1997, 78 (08) :1572-1575
[10]  
Economou E. N., 1983, Green's Functions in Quantum Physics