Cauchy problem of Schrodinger-Improved Boussinesq Systems on the torus

被引:2
作者
Zhong, Sijia [1 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R China
关键词
Schrodinger-Improved Boussinesq; System; Local well-posedness; Global well-posedness; Noise; DE-VRIES EQUATION; ZAKHAROV SYSTEM; WELL-POSEDNESS; WHITE-NOISE; DRIVEN;
D O I
10.1016/j.jmaa.2014.01.065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will study the local well-posedness of Schrodinger-Improved Boussinesq System with additive noise in T-d, d >= 1, and we will also study the global well-posedness of dimension 1 case with the initial data (u(0), v(1), v(2)) is an element of L-2 x L-2 x L-2 almost surely, gaining some exponential growth of L-2 norm of v. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:217 / 239
页数:23
相关论文
共 18 条
[1]   Well-posedness for the Schrodinger-improved Boussinesq system and related bilinear estimates [J].
Akahori, Takafumi .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2007, 50 (03) :469-489
[2]   On the 2D Zakharov system with L2 Schrodinger data [J].
Bejenaru, I. ;
Herr, S. ;
Holmer, J. ;
Tataru, D. .
NONLINEARITY, 2009, 22 (05) :1063-1089
[3]   Convolutions of singular measures and applications to the Zakharov system [J].
Bejenaru, Ioan ;
Herr, Sebastian .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (02) :478-506
[4]  
Bourgain J., 1999, Amer. Math. Soc. Colloq. Publ., V46
[5]   Bilinear eigenfunction estimates and the nonlinear Schrodinger equation on surfaces [J].
Burq, N ;
Gérard, P ;
Tzvetkov, N .
INVENTIONES MATHEMATICAE, 2005, 159 (01) :187-223
[6]   Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrodinger systems [J].
Colliander, James ;
Holmer, Justin ;
Tzirakis, Nikolaos .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (09) :4619-4638
[7]  
Da Prato G., 1992, Encyclopedia Math. Appl.
[8]   Periodic solutions of the Korteweg-de Vries equation driven by white noise [J].
De Bouard, A ;
Debussche, A ;
Tsutsumi, Y .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (03) :815-855
[9]   The stochastic nonlinear Schrodinger equation in H 1 [J].
de Bouard, A ;
Debussche, A .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2003, 21 (01) :97-126
[10]   White noise driven Korteweg-de Vries equation [J].
de Bouard, A ;
Debussche, A ;
Tsutsumi, Y .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 169 (02) :532-558