Time-discrete higher order ALE formulations: a priori error analysis

被引:12
作者
Bonito, Andrea [1 ]
Kyza, Irene [2 ]
Nochetto, Ricardo H. [3 ,4 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Fdn Res & Technol Hellas, Inst Appl & Computat Math, Iraklion 70013, Greece
[3] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[4] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
CONVECTION-DIFFUSION EQUATION; GEOMETRIC CONSERVATION LAW; PARABOLIC EQUATIONS; STABILITY; SCHEMES;
D O I
10.1007/s00211-013-0539-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive optimal a priori error estimates for discontinuous Galerkin (dG) time discrete schemes of any order applied to an advection-diffusion model defined on moving domains and written in the Arbitrary Lagrangian Eulerian (ALE) framework. Our estimates hold without any restrictions on the time steps for dG with exact integration or Reynolds' quadrature. They involve a mild restriction on the time steps for the practical Runge-Kutta-Radau methods of any order. The key ingredients are the stability results shown earlier in Bonito et al. (Time-discrete higher order ALE formulations: stability, 2013) along with a novel ALE projection. Numerical experiments illustrate and complement our theoretical results.
引用
收藏
页码:225 / 257
页数:33
相关论文
共 26 条
[1]   Galerkin time-stepping methods for nonlinear parabolic equations [J].
Akrivis, G ;
Makridakis, C .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2004, 38 (02) :261-289
[2]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[3]  
[Anonymous], 1978, STUDIES MATH ITS APP
[4]   Analysis of a stabilized finite element approximation of the transient convection-diffusion equation using an ALE framework [J].
Badia, Santiago ;
Codina, Ramon .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (05) :2159-2197
[5]   deal. II - A general-purpose object-oriented finite element library [J].
Bangerth, W. ;
Hartmann, R. ;
Kanschat, G. .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2007, 33 (04)
[6]   Stability and geometric conservation laws for ALE formulations [J].
Boffi, D ;
Gastaldi, L .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (42-44) :4717-4739
[7]  
Bonito A., TIME DISCRETE UNPUB
[8]   TIME-DISCRETE HIGHER-ORDER ALE FORMULATIONS: STABILITY [J].
Bonito, Andrea ;
Kyza, Irene ;
Nochetto, Ricardo H. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) :577-604
[9]  
Brenner S.C., 2008, MATH THEORY FINITE E, V15
[10]   Lagrangian and moving mesh methods for the convection diffusion equation [J].
Chrysafinos, Konstantinos ;
Walkington, Noel J. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (01) :25-55