Improved repeatability of dynamic contrast-enhanced MRI using the complex MRI signal to derive arterial input functions: a test-retest study in prostate cancer patients

被引:11
|
作者
Klawer, Edzo M. E. [1 ]
van Houdt, Petra J. [1 ]
Simonis, Frank F. J. [2 ]
van den Berg, Cornelis A. T. [2 ]
Pos, Floris J. [1 ]
Heijmink, Stijn W. T. P. J. [3 ]
Isebaert, Sofie [4 ]
Haustermans, Karin [4 ]
van der Heide, Uulke A. [1 ]
机构
[1] Netherlands Canc Inst, Dept Radiat Oncol, Plesmanlaan 121, NL-1066 CX Amsterdam, Netherlands
[2] Univ Med Ctr, Imaging Div, Dept Radiat Oncol, Utrecht, Netherlands
[3] Netherlands Canc Inst, Dept Radiol, Amsterdam, Netherlands
[4] Univ Hosp Leuven, Leuven Canc Inst, Dept Radiat Oncol, Leuven, Belgium
关键词
arterial input function; complex signal; dynamic contrast-enhanced MRI; prostate cancer; repeatability; tracer kinetic analysis; DCE-MRI; KINETIC-PARAMETERS; CLINICAL-TRIALS; LEAST-SQUARES; STEADY-STATE; T-1; REPRODUCIBILITY; PHASE; ACCURACY; RADIOFREQUENCY;
D O I
10.1002/mrm.27646
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: The arterial input function (AIF) is a major source of uncertainty in tracer kinetic (TK) analysis of dynamic contrast-enhanced (DCE)-MRI data. The aim of this study was to investigate the repeatability of AIFs extracted from the complex signal and of the resulting TK parameters in prostate cancer patients. Methods: Twenty-two patients with biopsy-proven prostate cancer underwent a 3T MRI exam twice. DCE-MRI data were acquired with a 3D spoiled gradient echo sequence. AIFs were extracted from the magnitude of the signal (AIF(MAGN)), phase (AIF(PHASE)), and complex signal (AIF(COMPLEX)). The Tofts model was applied to extract K-trans, k(ep) and v(e). Repeatability of AIF curve characteristics and TK parameters was assessed with the within-subject coefficient of variation (wCV). Results: The wCV for peak height and full width at half maximum for AIF(COMPLEX) (7% and 8%) indicated an improved repeatability compared to AIF(MAGN) (12% and 12%) and AIF(PHASE) (12% and 7%). This translated in lower wCV values for K-trans (11%) with AIF(COMPLEX) in comparison to AIF(MAGN) (24%) and AIF(PHASE) (15%). For k(ep), the wCV was 16% with AIF(MAGN), 13% with AIF(PHASE), and 13% with AIF(COMPLEX). Conclusion: Repeatability of AIF(PHASE), and AIF(COMPLEX )is higher than for AIF(MAGN), resulting in a better repeatability of TK parameters. Thus, use of either AIF(PHASE) or AIF(COMPLEX) improves the robustness of quantitative analysis of DCE-MRI in prostate cancer.
引用
收藏
页码:3358 / 3369
页数:12
相关论文
共 50 条
  • [41] Differentiation of myeloma and metastatic cancer in the spine using dynamic contrast-enhanced MRI
    Lang, Ning
    Su, Min-Ying
    Yu, Hon J.
    Lin, Muqing
    Hamamura, Mark J.
    Yuan, Huishu
    MAGNETIC RESONANCE IMAGING, 2013, 31 (08) : 1285 - 1291
  • [42] Wash-in rate on the basis of dynamic contrast-enhanced MRI: Usefulness for prostate cancer detection and localization
    Kim, JK
    Hong, SS
    Choi, YJ
    Park, SH
    Ahn, H
    Kim, CS
    Cho, KS
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2005, 22 (05) : 639 - 646
  • [43] Differentiation of tuberculosis and metastatic cancer in the spine using dynamic contrast-enhanced MRI
    Ning Lang
    Min-Ying Su
    Hon J. Yu
    Huishu Yuan
    European Spine Journal, 2015, 24 : 1729 - 1737
  • [44] Use of Indicator Dilution Principle to Evaluate Accuracy of Arterial Input Function Measured With Low-Dose Ultrafast Prostate Dynamic Contrast-Enhanced MRI
    Wang, Shiyang
    Fan, Xiaobing
    Zhang, Yue
    Medved, Milica
    He, Dianning
    Yousuf, Ambereen
    Jamison, Ernest
    Oto, Aytekin
    Karczmar, Gregory S.
    TOMOGRAPHY, 2019, 5 (02) : 260 - 265
  • [45] Semi-quantitative and quantitative dynamic contrast-enhanced (DCE) MRI parameters as prostate cancer imaging biomarkers for biologically targeted radiation therapy
    Reynolds, Hayley M.
    Tadimalla, Sirisha
    Wang, Yu-Feng
    Montazerolghaem, Maryam
    Sun, Yu
    Williams, Scott
    Mitchell, Catherine
    Finnegan, Mary E.
    Murphy, Declan G.
    Haworth, Annette
    CANCER IMAGING, 2022, 22 (01)
  • [46] Differentiation of tuberculosis and metastatic cancer in the spine using dynamic contrast-enhanced MRI
    Lang, Ning
    Su, Min-Ying
    Yu, Hon J.
    Yuan, Huishu
    EUROPEAN SPINE JOURNAL, 2015, 24 (08) : 1729 - 1737
  • [47] Estimating the arterial input function from dynamic contrast-enhanced MRI data with compensation for flow enhancement (I): Theory, method, and phantom experiments
    van Schie, Jeroen J. N.
    Lavini, Cristina
    van Vliet, Lucas J.
    Vos, Frans M.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 47 (05) : 1190 - 1196
  • [48] Semiautomatic Determination of Arterial Input Functions for Quantitative Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Non-Small Cell Lung Cancer Patients
    Chung, Julius
    Kim, Jae-Hun
    Lee, Eun Ju
    Kim, Yoo Na
    Yi, Chin A.
    INVESTIGATIVE RADIOLOGY, 2015, 50 (03) : 129 - 134
  • [49] Estimating the arterial input function using two reference tissues in dynamic contrast-enhanced MRI studies: Fundamental concepts and simulations
    Yang, C
    Karczmar, GS
    Medved, M
    Stadler, WM
    MAGNETIC RESONANCE IN MEDICINE, 2004, 52 (05) : 1110 - 1117
  • [50] Assessment of Prostate Cancer Aggressiveness by Use of the Combination of Quantitative DWI and Dynamic Contrast-Enhanced MRI
    Hoetker, Andreas M.
    Mazaheri, Yousef
    Aras, Oemer
    Zheng, Junting
    Moskowitz, Chaya S.
    Gondo, Tatsuo
    Matsumoto, Kazuhiro
    Hricak, Hedvig
    Akin, Oguz
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2016, 206 (04) : 756 - 763