Improved repeatability of dynamic contrast-enhanced MRI using the complex MRI signal to derive arterial input functions: a test-retest study in prostate cancer patients

被引:11
|
作者
Klawer, Edzo M. E. [1 ]
van Houdt, Petra J. [1 ]
Simonis, Frank F. J. [2 ]
van den Berg, Cornelis A. T. [2 ]
Pos, Floris J. [1 ]
Heijmink, Stijn W. T. P. J. [3 ]
Isebaert, Sofie [4 ]
Haustermans, Karin [4 ]
van der Heide, Uulke A. [1 ]
机构
[1] Netherlands Canc Inst, Dept Radiat Oncol, Plesmanlaan 121, NL-1066 CX Amsterdam, Netherlands
[2] Univ Med Ctr, Imaging Div, Dept Radiat Oncol, Utrecht, Netherlands
[3] Netherlands Canc Inst, Dept Radiol, Amsterdam, Netherlands
[4] Univ Hosp Leuven, Leuven Canc Inst, Dept Radiat Oncol, Leuven, Belgium
关键词
arterial input function; complex signal; dynamic contrast-enhanced MRI; prostate cancer; repeatability; tracer kinetic analysis; DCE-MRI; KINETIC-PARAMETERS; CLINICAL-TRIALS; LEAST-SQUARES; STEADY-STATE; T-1; REPRODUCIBILITY; PHASE; ACCURACY; RADIOFREQUENCY;
D O I
10.1002/mrm.27646
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: The arterial input function (AIF) is a major source of uncertainty in tracer kinetic (TK) analysis of dynamic contrast-enhanced (DCE)-MRI data. The aim of this study was to investigate the repeatability of AIFs extracted from the complex signal and of the resulting TK parameters in prostate cancer patients. Methods: Twenty-two patients with biopsy-proven prostate cancer underwent a 3T MRI exam twice. DCE-MRI data were acquired with a 3D spoiled gradient echo sequence. AIFs were extracted from the magnitude of the signal (AIF(MAGN)), phase (AIF(PHASE)), and complex signal (AIF(COMPLEX)). The Tofts model was applied to extract K-trans, k(ep) and v(e). Repeatability of AIF curve characteristics and TK parameters was assessed with the within-subject coefficient of variation (wCV). Results: The wCV for peak height and full width at half maximum for AIF(COMPLEX) (7% and 8%) indicated an improved repeatability compared to AIF(MAGN) (12% and 12%) and AIF(PHASE) (12% and 7%). This translated in lower wCV values for K-trans (11%) with AIF(COMPLEX) in comparison to AIF(MAGN) (24%) and AIF(PHASE) (15%). For k(ep), the wCV was 16% with AIF(MAGN), 13% with AIF(PHASE), and 13% with AIF(COMPLEX). Conclusion: Repeatability of AIF(PHASE), and AIF(COMPLEX )is higher than for AIF(MAGN), resulting in a better repeatability of TK parameters. Thus, use of either AIF(PHASE) or AIF(COMPLEX) improves the robustness of quantitative analysis of DCE-MRI in prostate cancer.
引用
收藏
页码:3358 / 3369
页数:12
相关论文
共 50 条
  • [31] Time-Signal Curve Evaluation from Dynamic Contrast-Enhanced MRI for Prostate Cancer Detection
    Surkant, Roman
    Bernatavciene, Jolita
    Naruseviciute, Ieva
    Trakymas, Mantas
    Treigys, Povilas
    ADVANCES IN DIGITAL HEALTH AND MEDICAL BIOENGINEERING, VOL 3, EHB-2023, 2024, 111 : 340 - 348
  • [32] Pseudo Test-Retest Evaluation of Millimeter-Resolution Whole-Brain Dynamic Contrast-enhanced MRI in Patients with High-Grade Glioma
    Bliesener, Yannick
    Lebel, R. Marc
    Acharya, Jay
    Frayne, Richard
    Nayak, Krishna S.
    RADIOLOGY, 2021, 300 (02) : 410 - 420
  • [33] Intratumor distribution and test-retest comparisons of physiological parameters quantified by dynamic contrast-enhanced MRI in rat U251 glioma
    Aryal, Madhava P.
    Nagaraja, Tavarekere N.
    Brown, Stephen L.
    Lu, Mei
    Bagher-Ebadian, Hassan
    Ding, Guangliang
    Panda, Swayamprava
    Keenan, Kelly
    Cabral, Glauber
    Mikkelsen, Tom
    Ewing, James R.
    NMR IN BIOMEDICINE, 2014, 27 (10) : 1230 - 1238
  • [34] Dynamic contrast-enhanced MRI parametric mapping using high spatiotemporal resolution Golden-angle RAdial Sparse Parallel MRI and iterative joint estimation of the arterial input function and pharmacokinetic parameters
    Mazaheri, Yousef
    Kim, Nathanael
    Lakhman, Yulia
    Jafari, Ramin
    Vargas, Alberto
    Otazo, Ricardo
    NMR IN BIOMEDICINE, 2022, 35 (07)
  • [35] Estimation of the capillary level input function for dynamic contrast-enhanced MRI of the breast using a deep learning approach
    Bae, Jonghyun
    Huang, Zhengnan
    Knoll, Florian
    Geras, Krzysztof
    Sood, Terlika Pandit
    Feng, Li
    Heacock, Laura
    Moy, Linda
    Kim, Sungheon Gene
    MAGNETIC RESONANCE IN MEDICINE, 2022, 87 (05) : 2536 - 2550
  • [36] Early assessment of response to chemotherapy in lung cancer using dynamic contrast-enhanced MRI: a proof-of-concept study
    Xu, J.
    Mei, L.
    Liu, L.
    Wang, K.
    Zhou, Z.
    Zheng, J.
    CLINICAL RADIOLOGY, 2018, 73 (07) : 625 - 631
  • [37] Improved Dynamic Contrast-Enhanced MRI Using Low Rank With Joint Sparsity
    Zhang, Jichang
    Najeeb, Faisal
    Wang, Xinpei
    Xu, Pengfei
    Omer, Hammad
    Zheng, Jianjun
    Zhang, Jingfeng
    Francis, Sue
    Glover, Paul
    Bowtell, Richard
    Wang, Chengbo
    IEEE ACCESS, 2022, 10 : 121193 - 121203
  • [38] Feasibility of using limited-population-based arterial input function for pharmacokinetic modeling of osteosarcoma dynamic contrast-enhanced MRI data
    Wang, Ya
    Huang, Wei
    Panicek, David A.
    Schwartz, Lawrence H.
    Koutcher, Jason A.
    MAGNETIC RESONANCE IN MEDICINE, 2008, 59 (05) : 1183 - 1189
  • [39] Effect of parallel radiofrequency transmission on arterial input function selection in dynamic contrast-enhanced 3 Tesla pelvic MRI
    Chafi, Hatim
    Elias, Saba N.
    Nguyen, Huyen T.
    Friel, Harry T.
    Knopp, Michael V.
    Guo, BeiBei
    Heymsfield, Steven B.
    Jia, Guang
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2016, 43 (01) : 229 - 235
  • [40] Reproducibility and Optimal Arterial Input Function Selection in Dynamic Contrast-Enhanced Perfusion MRI in the Healthy Brain
    Cramer, Stig P.
    Larsson, Henrik B. W.
    Knudsen, Maria H.
    Simonsen, Helle J.
    Vestergaard, Mark B.
    Lindberg, Ulrich
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 57 (04) : 1229 - 1240