Improved repeatability of dynamic contrast-enhanced MRI using the complex MRI signal to derive arterial input functions: a test-retest study in prostate cancer patients

被引:11
|
作者
Klawer, Edzo M. E. [1 ]
van Houdt, Petra J. [1 ]
Simonis, Frank F. J. [2 ]
van den Berg, Cornelis A. T. [2 ]
Pos, Floris J. [1 ]
Heijmink, Stijn W. T. P. J. [3 ]
Isebaert, Sofie [4 ]
Haustermans, Karin [4 ]
van der Heide, Uulke A. [1 ]
机构
[1] Netherlands Canc Inst, Dept Radiat Oncol, Plesmanlaan 121, NL-1066 CX Amsterdam, Netherlands
[2] Univ Med Ctr, Imaging Div, Dept Radiat Oncol, Utrecht, Netherlands
[3] Netherlands Canc Inst, Dept Radiol, Amsterdam, Netherlands
[4] Univ Hosp Leuven, Leuven Canc Inst, Dept Radiat Oncol, Leuven, Belgium
关键词
arterial input function; complex signal; dynamic contrast-enhanced MRI; prostate cancer; repeatability; tracer kinetic analysis; DCE-MRI; KINETIC-PARAMETERS; CLINICAL-TRIALS; LEAST-SQUARES; STEADY-STATE; T-1; REPRODUCIBILITY; PHASE; ACCURACY; RADIOFREQUENCY;
D O I
10.1002/mrm.27646
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: The arterial input function (AIF) is a major source of uncertainty in tracer kinetic (TK) analysis of dynamic contrast-enhanced (DCE)-MRI data. The aim of this study was to investigate the repeatability of AIFs extracted from the complex signal and of the resulting TK parameters in prostate cancer patients. Methods: Twenty-two patients with biopsy-proven prostate cancer underwent a 3T MRI exam twice. DCE-MRI data were acquired with a 3D spoiled gradient echo sequence. AIFs were extracted from the magnitude of the signal (AIF(MAGN)), phase (AIF(PHASE)), and complex signal (AIF(COMPLEX)). The Tofts model was applied to extract K-trans, k(ep) and v(e). Repeatability of AIF curve characteristics and TK parameters was assessed with the within-subject coefficient of variation (wCV). Results: The wCV for peak height and full width at half maximum for AIF(COMPLEX) (7% and 8%) indicated an improved repeatability compared to AIF(MAGN) (12% and 12%) and AIF(PHASE) (12% and 7%). This translated in lower wCV values for K-trans (11%) with AIF(COMPLEX) in comparison to AIF(MAGN) (24%) and AIF(PHASE) (15%). For k(ep), the wCV was 16% with AIF(MAGN), 13% with AIF(PHASE), and 13% with AIF(COMPLEX). Conclusion: Repeatability of AIF(PHASE), and AIF(COMPLEX )is higher than for AIF(MAGN), resulting in a better repeatability of TK parameters. Thus, use of either AIF(PHASE) or AIF(COMPLEX) improves the robustness of quantitative analysis of DCE-MRI in prostate cancer.
引用
收藏
页码:3358 / 3369
页数:12
相关论文
共 50 条
  • [21] Arterial input functions for dynamic susceptibility contrast MRI: Requirements and signal options
    Conturo, TE
    Akbudak, E
    Kotys, MS
    Chen, ML
    Chun, SJ
    Hsu, RM
    Sweeney, CC
    Markham, J
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2005, 22 (06) : 697 - 703
  • [22] Phase-based arterial input functions in humans applied to dynamic contrast-enhanced MRI: potential usefulness and limitations
    Anders Garpebring
    Ronnie Wirestam
    Jun Yu
    Thomas Asklund
    Mikael Karlsson
    Magnetic Resonance Materials in Physics, Biology and Medicine, 2011, 24 : 233 - 245
  • [23] Influence of arterial input function (AIF) on quantitative prostate dynamic contrast-enhanced (DCE) MRI and zonal prostate anatomy
    Ziayee, F.
    Mueller-Lutz, A.
    Gross, J.
    Quentin, M.
    Ullrich, T.
    Heusch, P.
    Arsov, C.
    Rabenalt, R.
    Albers, P.
    Antoch, G.
    Wittsack, H. J.
    Schimmoeller, L.
    MAGNETIC RESONANCE IMAGING, 2018, 53 : 28 - 33
  • [24] Assessment of the effect of haematocrit-dependent arterial input functions on the accuracy of pharmacokinetic parameters in dynamic contrast-enhanced MRI
    Just, Nathalie
    Koh, Dow-Mu
    D'Arcy, James
    Collins, David J.
    Leach, Martin O.
    NMR IN BIOMEDICINE, 2011, 24 (07) : 902 - 915
  • [25] Reference region extraction by clustering for the pharmacokinetic analysis of dynamic contrast-enhanced MRI in prostate cancer
    Ikoma, Yoko
    Kishimoto, Riwa
    Tachibana, Yasuhiko
    Omatsu, Tokuhiko
    Kasuya, Goro
    Makishima, Hirokazu
    Higashi, Tatsuya
    Obata, Takayuki
    Tsuji, Hiroshi
    MAGNETIC RESONANCE IMAGING, 2020, 66 : 185 - 192
  • [26] Effects of Inflow and Radiofrequency Spoiling on the Arterial Input Function in Dynamic Contrast-Enhanced MRI: A Combined Phantom and Simulation Study
    Garpebring, Anders
    Wirestam, Ronnie
    Ostlund, Nils
    Karlsson, Mikael
    MAGNETIC RESONANCE IN MEDICINE, 2011, 65 (06) : 1670 - 1679
  • [27] Dynamic Contrast-Enhanced MRI in Mice at High Field: Estimation of the Arterial Input Function Can be Achieved by Phase Imaging
    Fruytier, A. -C.
    Magat, J.
    Colliez, F.
    Jordan, B.
    Cron, G.
    Gallez, B.
    MAGNETIC RESONANCE IN MEDICINE, 2014, 71 (02) : 544 - 550
  • [28] Dynamic Contrast-Enhanced Perfusion MRI of High Grade Brain Gliomas Obtained with Arterial or Venous Waveform Input Function
    Filice, Silvano
    Crisi, Girolamo
    JOURNAL OF NEUROIMAGING, 2016, 26 (01) : 124 - 129
  • [29] An Efficient Calculation Method for Pharmacokinetic Parameters in Brain Permeability Study Using Dynamic Contrast-Enhanced MRI
    Wang, Chunhao
    Yin, Fang-Fang
    Chang, Zheng
    MAGNETIC RESONANCE IN MEDICINE, 2016, 75 (02) : 739 - 749
  • [30] A simulation study comparing nine mathematical models of arterial input function for dynamic contrast enhanced MRI to the Parker model
    He, Dianning
    Xu, Lisheng
    Qian, Wei
    Clarke, James
    Fan, Xiaobing
    AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE, 2018, 41 (02) : 507 - 518