Absolutely convergent Fourier series, classical function classes and Paley's theorem

被引:13
作者
Moricz, Ferenc [1 ]
机构
[1] Univ Szeged, Bolyai Inst, H-6720 Szeged, Hungary
关键词
Fourier Series; Function Class; Trigonometric Series; Sine Series; Lipschitz Class;
D O I
10.1007/s10476-008-0402-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is a survey paper on the recent progress in the study of the continuity and smoothness properties of a function f with absolutely convergent Fourier series. We give best possible sufficient conditions in terms of the Fourier coefficients of f which ensure the belonging of f either to one of the Lipschitz classes Lip(alpha) and lip(alpha) for some 0 < alpha <= 1, or to one of the Zygmund classes Zyg(alpha) and zyg(alpha) for some 0 < alpha <= 2. We also discuss the termwise differentiation of Fourier series. Our theorems generalize those by R. P. Boas Jr., J. Nemeth and R. E. A. C. Paley, and a number of them are first published in this paper or proved in a simpler way.
引用
收藏
页码:261 / 276
页数:16
相关论文
共 9 条
[1]  
[Anonymous], 1959, TRIGONOMETRIC SERIES
[2]  
Bary NK., 1964, TREATISE TRIGONOMETR
[3]   FOURIER SERIES WITH POSITIVE COEFFICIENTS [J].
BOAS, RP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1967, 17 (03) :463-&
[4]  
DeVore Ronald A., 1993, CONSTRUTIVE APPROXIM, V303
[5]  
Leindler L., 1993, ACTA SCI MATH SZEGED, V58, P191
[6]   Absolutely convergent Fourier series and function classes.: II [J].
Moricz, Ferenc .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) :1246-1249
[7]   Absolutely convergent Fourier series and function classes [J].
Moricz, Ferenc .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (02) :1168-1177
[8]  
Nemeth J., 1990, Acta Sci. Math. (Szeged), V54, P291
[9]  
PALEY R.E. A. C., 1932, J. London Math. Soc, V7, P205