Estimates of Spaceborne Precipitation Radar Pulsewidth and Beamwidth Using Sea Surface Echo Data

被引:7
作者
Kanemaru, Kaya [1 ]
Iguchi, Toshio [2 ]
Masaki, Takeshi [3 ]
Kubota, Takuji [4 ]
机构
[1] Natl Inst Informat & Commun Technol, Appl Electromagnet Res Inst, Koganei, Tokyo 1840015, Japan
[2] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA
[3] Remote Sensing Technol Ctr Japan, Tokyo 1050001, Japan
[4] Japan Aerosp Explorat Agcy, Earth Observat Res Ctr, Tsukuba, Ibaraki 3058505, Japan
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2020年 / 58卷 / 08期
关键词
Global precipitation measurement (GPM); intercomparison; sea surface echo (SSE); spaceborne precipitation radar (PR); tropical rainfall measuring mission (TRMM); BEAM-MISMATCH; MISSION; PR; IMPROVEMENTS; CALIBRATION; RETRIEVAL;
D O I
10.1109/TGRS.2019.2963090
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Calibration consistency between Ku-band radars flown on the Tropical Rainfall Measuring Mission's (TRMM's) precipitation radar (PR) and the global precipitation measurement (GPM) mission's dual-frequency PR (DPR) can be attained by the use of the normalized radar cross section (NRCS) or sigma(0) over the oceans. With the use of the sea surface echo (SSE) data obtained from the spaceborne PRs, this article aims to estimate the radar parameters of pulsewidth and beamwidth and to evaluate the bias in the NRCS estimates caused by the discrete range sampling. Since the SSE shape is closely related to the received pulsewidth and the two-way cross-track beamwidth, those parameters are individually estimated from the SSE shapes. The SSE shapes are also used to evaluate the impact of the discrete range sampling on the NRCS statistics. The pulsewidth and beamwidth estimated from the SSEs compare well with the level-1 values and accurately reflect changes in the configuration of the radars. The NRCS statistics in GPM version 06 show that the calibration consistency between GPM KuPR and TRMM PR is evaluated within the range of -0.39 to +0.03 dB (-0.48 to +0.11 dB) with (without) the peak correction.
引用
收藏
页码:5291 / 5303
页数:13
相关论文
共 48 条
  • [31] Estimates of Forest Growing Stock Volume for Sweden, Central Siberia, and Quebec Using Envisat Advanced Synthetic Aperture Radar Backscatter Data
    Santoro, Maurizio
    Cartus, Oliver
    Fransson, Johan E. S.
    Shvidenko, Anatoly
    McCallum, Ian
    Hall, Ronald J.
    Beaudoin, Andre
    Beer, Christian
    Schmullius, Christiane
    REMOTE SENSING, 2013, 5 (09) : 4503 - 4532
  • [32] Sea Surface Current Estimation From a Semi-Enclosed Bay Using Coastal X-Band Radar Images
    Wu, Li-Chung
    Doong, Dong-Jiing
    Lai, Jian-Wu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [33] Sea ice remote sensing using AMSR-E data: Surface roughness and refractive index
    Shin, Inchul
    Park, Jongseo
    Suh, Aesook
    Hong, Sungwook
    REMOTE SENSING OF THE OCEAN, SEA ICE, COASTAL WATERS, AND LARGE WATER REGIONS 2011, 2011, 8175
  • [34] Sensitivity of Landsat 8 Surface Temperature Estimates to Atmospheric Profile Data: A Study Using MODTRAN in Dryland Irrigated Systems
    Rosas, Jorge
    Houborg, Rasmus
    McCabe, Matthew F.
    REMOTE SENSING, 2017, 9 (10)
  • [35] Derivation of Sea Surface Wind Directions from TerraSAR-X Data Using the Local Gradient Method
    Wang, Yi-Ran
    Li, Xiao-Ming
    REMOTE SENSING, 2016, 8 (01)
  • [36] ANTARCTIC ICE SHEET SURFACE MASS BALANCE ESTIMATES FROM 2003 TO 2015 USING ICESAT AND CRYOSAT-2 DATA
    Xie, Huan
    Hai, Gang
    Chen, Lei
    Liu, Shijie
    Liu, Jun
    Tong, Xiaohua
    Li, Rongxing
    XXIII ISPRS CONGRESS, COMMISSION VIII, 2016, 41 (B8): : 549 - 553
  • [37] Inter-satellite atmospheric and radiometric correction for the retrieval of Landsat sea surface temperature by using Terra MODIS data
    Han, Hyangsun
    Lee, Hoonyol
    GEOSCIENCES JOURNAL, 2012, 16 (02) : 171 - 180
  • [38] Bare Surface Soil Moisture Estimation Using Double-Angle and Dual-Polarization L-Band Radar Data
    Shen, Xinyi
    Mao, Kebiao
    Qin, Qiming
    Hong, Yang
    Zhang, Guifu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (07): : 3931 - 3942
  • [39] Investigating sea surface temperature diurnal variation over the Tropical Warm Pool using MTSAT-1R data
    Zhang, Haifeng
    Beggs, Helen
    Majewski, Leon
    Wang, Xiao Hua
    Kiss, Andrew
    REMOTE SENSING OF ENVIRONMENT, 2016, 183 : 1 - 12
  • [40] Spatial-Temporal Variation in Sea Surface Temperature from Landsat Time Series Data Using Annual Temperature Cycle
    Zhang, Ke
    Jiang, Tao
    Huang, Jue
    JOURNAL OF COASTAL RESEARCH, 2019, : 58 - 65