CONSTRUCTION OF TWO-BUBBLE SOLUTIONS FOR THE ENERGY-CRITICAL NLS

被引:22
作者
Jendrej, Jacek [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
nonlinear Schrodinger equation; energy-critical; multisoliton; NONLINEAR SCHRODINGER-EQUATION; GLOBAL WELL-POSEDNESS; BLOW-UP; GROUND-STATE; DYNAMICS; SCATTERING; COMPACTNESS;
D O I
10.2140/apde.2017.10.1923
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct pure two-bubbles for the energy-critical focusing nonlinear Schrodinger equation in space dimension N >= 7. The constructed solution is global in (at least) one time direction and approaches a superposition of two stationary states both centered at the origin, with the ratio of their length scales converging to 0. One of the bubbles develops at scale 1, whereas the length scale of the other converges to 0 at rate vertical bar t vertical bar-2/N-6. The phases of the two bubbles form the right angle.
引用
收藏
页码:1923 / 1959
页数:37
相关论文
共 32 条
[1]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[2]   High frequency approximation of solutions to critical nonlinear wave equations [J].
Bahouri, H ;
Gérard, P .
AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (01) :131-175
[3]   Global wellposedness of defocusing critical nonlinear Schrodinger equation in the radial case [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :145-171
[4]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[5]   Global well-posedness and scattering for the energy-critical nonlinear Schrodinger equation in R3 [J].
Colliander, J. ;
Keel, M. ;
Staffilani, G. ;
Takaoka, H. ;
Tao, T. .
ANNALS OF MATHEMATICS, 2008, 167 (03) :767-865
[6]   Dynamics Near the Ground State for the Energy Critical Nonlinear Heat Equation in Large Dimensions [J].
Collot, Charles ;
Merle, Frank ;
Raphael, Pierre .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 352 (01) :215-285
[7]   SOLITON RESOLUTION ALONG A SEQUENCE OF TIMES FOR THE FOCUSING ENERGY CRITICAL WAVE EQUATION [J].
Duyckaerts, Thomas ;
Jia, Hao ;
Kenig, Carlos ;
Merle, Frank .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2017, 27 (04) :798-862
[8]  
Duyckaerts T, 2013, CAMB J MATH, V1, P75
[9]   Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation [J].
Duyckaerts, Thomas ;
Kenig, Carlos ;
Merle, Frank .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (03) :533-599
[10]   DYNAMIC OF THRESHOLD SOLUTIONS FOR ENERGY-CRITICAL NLS [J].
Duyckaerts, Thomas ;
Merle, Frank .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 18 (06) :1787-1840