Finite Energy Local Well-Posedness for the Yang-Mills-Higgs Equations in Lorenz Gauge

被引:7
作者
Tesfahun, Achenef [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
关键词
NONLINEAR-WAVE EQUATIONS; GLOBAL EXISTENCE; REGULARITY; SCATTERING; SPACE;
D O I
10.1093/imrn/rnu087
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Yang-Mills-Higgs equations (Y-M-H), when written relative to Lorenz gauge, become a system of nonlinear wave equations. The key bilinear terms in the resulting system turn out to be null forms-this is in light of a recent discovery of null structure by Selberg and the present author for Yang-Mills equations in Lorenz gauge. Using the null structure found and bilinear space-time estimates, we prove local well-posedness of Y-M-H in Lorenz gauge for finite energy data.
引用
收藏
页码:5140 / 5161
页数:22
相关论文
共 19 条
[1]  
D'Ancona P, 2012, T AM MATH SOC, V364, P31
[2]  
D'Ancona P, 2010, AM J MATH, V132, P771
[3]  
EARDLEY DM, 1982, COMMUN MATH PHYS, V83, P193, DOI [10.1007/BF01976041, 10.1007/BF01976040]
[4]  
Keel M, 1997, COMMUN PART DIFF EQ, V22, P1161
[5]   FINITE-ENERGY SOLUTIONS OF THE YANG-MILLS EQUATIONS IN R(3+1) [J].
KLAINERMAN, S ;
MACHEDON, M .
ANNALS OF MATHEMATICS, 1995, 142 (01) :39-119
[6]   On the optimal local regularity for the Yang-Mills equations in R4+1 [J].
Klainerman, S ;
Tataru, D .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :93-116
[7]   Renormalization and blow up for the critical Yang-Mills problem [J].
Krieger, J. ;
Schlag, W. ;
Tataru, D. .
ADVANCES IN MATHEMATICS, 2009, 221 (05) :1445-1521
[8]   ON EXISTENCE AND SCATTERING WITH MINIMAL REGULARITY FOR SEMILINEAR WAVE-EQUATIONS [J].
LINDBLAD, H ;
SOGGE, CD .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 130 (02) :357-426
[9]   Counterexamples to local existence for semi-linear wave equations [J].
Lindblad, H .
AMERICAN JOURNAL OF MATHEMATICS, 1996, 118 (01) :1-16
[10]  
Oh S. J., 2012, FINITE ENERGY GLOBAL