A thermal conductivity model for low concentrated nanofluids containing surfactants under various dispersion types

被引:21
作者
Yang, Liu [1 ]
Du, Kai [1 ]
机构
[1] Southeast Univ, Sch Energy & Environm, Nanjing 210096, Jiangsu, Peoples R China
来源
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID | 2012年 / 35卷 / 07期
关键词
Model; Thermal conductivity; Fluid; Adsorption; Particle; Nanotube; ABSORPTION PERFORMANCE; INTERFACIAL LAYERS; NANO-PARTICLES; ENHANCEMENT; SUSPENSIONS; TEMPERATURE; NANOTUBES; GLYCOL; PH;
D O I
10.1016/j.ijrefrig.2012.07.013
中图分类号
O414.1 [热力学];
学科分类号
摘要
Various thermal conductivity models for nanofluid have been proposed, however, none have included the effect of the surfactant. In this paper, a thermal conductivity model which includes the effects of the interfacial layer formed by the surfactant and liquid molecules is proposed by upgrading Leong et al.'s model (2006). Based on the analysis of dispersion types, the thickness of the interfacial layer is defined by the length of the surfactant molecule for nanofluid under monolayer adsorption dispersion and double lengths of the surfactant molecule for nanofluid under electric double layer (EDL) adsorption dispersion. The length of the surfactant molecule is obtained by analyzing the stereo-chemical structure and assuming it is fully extended when adsorbed on the surface of the nanoparticle. The present model was compared with some experimental data for low concentrated nanofluid containing surfactants. The comparison results show the present model, in general, produces higher accuracies and precisions. (C) 2012 Elsevier Ltd and IIR. All rights reserved.
引用
收藏
页码:1978 / 1988
页数:11
相关论文
共 42 条
  • [21] Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids
    Li, X. F.
    Zhu, D. S.
    Wang, X. J.
    Wang, N.
    Gao, J. W.
    Li, H.
    [J]. THERMOCHIMICA ACTA, 2008, 469 (1-2) : 98 - 103
  • [22] Liao L., 2009, THESIS SHANGHAI JIAO, P50
  • [23] Effect of CuO Nanoparticles in Enhancing the Thermal Conductivities of Monoethylene Glycol and Paraffin Fluids
    Moghadassi, A. R.
    Hosseini, S. Masoud
    Henneke, Dale E.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (04) : 1900 - 1904
  • [24] Investigations of thermal conductivity and viscosity of nanofluids
    Murshed, S. M. S.
    Leong, K. C.
    Yang, C.
    [J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2008, 47 (05) : 560 - 568
  • [25] Enhanced thermal conductivity of TiO2 -: water based nanofluids
    Murshed, SMS
    Leong, KC
    Yang, C
    [J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2005, 44 (04) : 367 - 373
  • [26] Effect of dispersion method on thermal conductivity and stability of nanofluid
    Nasiri, Aida
    Shariaty-Niasar, Mojtaba
    Rashidi, Alimorad
    Amrollahi, Azadeh
    Khodafarin, Ramin
    [J]. EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2011, 35 (04) : 717 - 723
  • [27] Pang J.S., 2009, J FUNCT MAT S, V40, P199
  • [28] INTERFACIAL TRANSPORT IN POROUS-MEDIA - APPLICATION TO DC ELECTRICAL-CONDUCTIVITY OF MORTARS
    SCHWARTZ, LM
    GARBOCZI, EJ
    BENTZ, DP
    [J]. JOURNAL OF APPLIED PHYSICS, 1995, 78 (10) : 5898 - 5908
  • [29] [盛伟 SHENG Wei], 2008, [化工学报, Journal of Chemical Industry and Engineering (China)], V59, P2762
  • [30] A thermal conductivity model for nanofluids including effect of the temperature-dependent interfacial layer
    Sitprasert, Chatcharin
    Dechaumphai, Pramote
    Juntasaro, Varangrat
    [J]. JOURNAL OF NANOPARTICLE RESEARCH, 2009, 11 (06) : 1465 - 1476