Sodium storage in Na-rich NaxFeFe (CN)6 nanocubes

被引:311
作者
Liu, Yang [1 ,2 ]
Qiao, Yun [1 ,2 ]
Zhang, Wuxing [1 ]
Li, Zhen [1 ]
Ji, Xiao [3 ]
Miao, Ling [3 ]
Yuan, Lixia [1 ]
Hu, Xianluo [1 ]
Huang, Yunhui [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Hubei, Peoples R China
[2] Henan Normal Univ, Sch Chem & Chem Engn, Xinxiang 453007, Henan, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Opt & Elect informat, Wuhan 430074, Hubei, Peoples R China
关键词
Sodium-ion batteries; NaxFeFe(CN)(6) cathode; Nanocubes; First-principle theory; Sodium storage mechanism; PRUSSIAN BLUE; ION BATTERIES; CATHODE MATERIALS; SHELL NANOPARTICLES; ANODE MATERIALS; ENERGY-STORAGE; LOW-COST; HEXACYANOFERRATE; FRAMEWORK; INSERTION;
D O I
10.1016/j.nanoen.2015.01.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Na-rich prussian blue analogues (PBS) with high coulombic efficiency are of fundamental and technological importance for sodium-ion batteries (SIBs). Here we report high-quality NaxFeFe(CN)(6) nanocubes as cathode materials for SIBs and investigate their sodium storage mechanism. Among them, Na-rich Na1.70FeFe(CN)(6) shows highly reversible electrochemical reactions, delivering a capacity as high as 120.7 mA h g(-1) at a current density of 200 mA g(-1); even at 1200 mA g(-1), the capacity still retains up to 73.6 mA h g (1). The first-cycle coulombic efficiency strongly depends on the sodium content in NxFeFe(CN)(6). Experimental results and first-principle calculations demonstrate that sodium cations in the large cavities of PBs have a priority to occupy the 8c site, while in the Na-rich samples, Na ions can be pushed into other 24d site. We believe that our findings can provide new insights into sodium storage mechanism for the PBs. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:386 / 393
页数:8
相关论文
共 44 条
[1]   The smart-grid solution [J].
Amin, Massoud .
NATURE, 2013, 499 (7457) :145-147
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Bimetallic Cyanide-Bridged Coordination Polymers as Lithium Ion Cathode Materials: Core@Shell Nanoparticles with Enhanced Cyclability [J].
Asakura, Daisuke ;
Li, Carissa H. ;
Mizuno, Yoshifumi ;
Okubo, Masashi ;
Zhou, Haoshen ;
Talham, Daniel R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (07) :2793-2799
[4]   Rational Design and Synthesis of Cyano-Bridged Coordination Polymers with Precise Control of Particle Size from 20 to 500 nm [J].
Chiang, Ya-Dong ;
Hu, Ming ;
Kamachi, Yuichiro ;
Ishihara, Shinsuke ;
Takai, Kimiko ;
Tsujimoto, Yoshihiro ;
Ariga, Katsuhiko ;
Wu, Kevin C-W. ;
Yamauchi, Yusuke .
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2013, (18) :3141-3145
[5]   Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors [J].
Choi, Nam-Soon ;
Chen, Zonghai ;
Freunberger, Stefan A. ;
Ji, Xiulei ;
Sun, Yang-Kook ;
Amine, Khalil ;
Yushin, Gleb ;
Nazar, Linda F. ;
Cho, Jaephil ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (40) :9994-10024
[6]   MECHANISMS FOR LITHIUM INSERTION IN CARBONACEOUS MATERIALS [J].
DAHN, JR ;
ZHENG, T ;
LIU, YH ;
XUE, JS .
SCIENCE, 1995, 270 (5236) :590-593
[7]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[8]   True Performance Metrics in Electrochemical Energy Storage [J].
Gogotsi, Y. ;
Simon, P. .
SCIENCE, 2011, 334 (6058) :917-918
[9]   A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries [J].
Han, Man Huon ;
Gonzalo, Elena ;
Singh, Gurpreet ;
Rojo, Teofilo .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (01) :81-102
[10]   Atomic-Layer-Deposition Oxide Nanoglue for Sodium Ion Batteries [J].
Han, Xiaogang ;
Liu, Yang ;
Jia, Zheng ;
Chen, Yu-Chen ;
Wan, Jiayu ;
Weadock, Nicholas ;
Gaskell, Karen J. ;
Li, Teng ;
Hu, Liangbing .
NANO LETTERS, 2014, 14 (01) :139-147