Finite-size scaling and critical exponents in critical relaxation

被引:89
作者
Li, ZB [1 ]
Schulke, L [1 ]
Zheng, B [1 ]
机构
[1] UNIV GESAMTHSCH SIEGEN,D-57068 SIEGEN,GERMANY
来源
PHYSICAL REVIEW E | 1996年 / 53卷 / 03期
关键词
D O I
10.1103/PhysRevE.53.2940
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We simulate the critical relaxation process of the two-dimensional Ising model with the initial state both completely disordered or completely ordered. Results of a method to measure both the dynamic and static critical exponents are reported, based on the finite-size scaling for the dynamics at the early time. From the time-dependent Binder cumulant, the dynamical exponent z is extracted independently, while the static exponents beta/nu and nu are obtained from the time evolution of the magnetization and its higher moments.
引用
收藏
页码:2940 / 2948
页数:9
相关论文
共 37 条
[1]   STATIC CRITICAL EXPONENTS FROM THE DYNAMICS OF DAMAGE SPREADING AND OVERHANGS IN THE ISING-MODEL WITH TEMPERATURE-GRADIENT [J].
BATROUNI, GG ;
HANSEN, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (17) :L1059-L1064
[2]   CRITICAL-DYNAMICS OF AN INTERFACE IN 1 + EPSILON DIMENSIONS [J].
BAUSCH, R ;
DOHM, V ;
JANSSEN, HK ;
ZIA, RKP .
PHYSICAL REVIEW LETTERS, 1981, 47 (25) :1837-1840
[3]   FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS [J].
BINDER, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02) :119-140
[4]  
BINDER K, 1992, MONTE CARLO METHODS
[5]   DYNAMIC EXPONENT OF THE 3D ISING SPIN-GLASS [J].
BLUNDELL, RE ;
HUMAYUN, K ;
BRAY, AJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (12) :L733-L738
[6]   THEORY OF PHASE-ORDERING KINETICS [J].
BRAY, AJ .
ADVANCES IN PHYSICS, 1994, 43 (03) :357-459
[7]   EXACT EXPONENT-LAMBDA OF THE AUTOCORRELATION FUNCTION FOR A SOLUBLE MODEL OF COARSENING [J].
BRAY, AJ ;
DERRIDA, B .
PHYSICAL REVIEW E, 1995, 51 (03) :R1633-R1636
[8]   DYNAMIC CRITICAL EXPONENT OF THE 2-DIMENSIONAL ISING-MODEL [J].
DAMMANN, B ;
REGER, JD .
EUROPHYSICS LETTERS, 1993, 21 (02) :157-162
[9]   DYNAMICAL RELAXATION AND UNIVERSAL SHORT-TIME BEHAVIOR OF FINITE SYSTEMS [J].
DIEHL, HW ;
RITSCHEL, U .
JOURNAL OF STATISTICAL PHYSICS, 1993, 73 (1-2) :1-20
[10]   CRITICAL-BEHAVIOR OF THE 3-DIMENSIONAL ISING-MODEL - A HIGH-RESOLUTION MONTE-CARLO STUDY [J].
FERRENBERG, AM ;
LANDAU, DP .
PHYSICAL REVIEW B, 1991, 44 (10) :5081-5091