Two-dimensional isotropic harmonic oscillator on a time-dependent sphere

被引:3
作者
Mahdifar, Ali [1 ]
Mirza, Behrouz [2 ]
Roknizadeh, Rasoul [3 ,4 ]
机构
[1] Shahrekord Univ, Dept Phys, Fac Sci, Shahrekord 8818634141, Iran
[2] Isfahan Univ Technol, Dept Phys, Esfahan 8415683111, Iran
[3] Univ Isfahan, Fac Sci, Dept Phys, Hezar Jerib 8174673441, Isfahan, Iran
[4] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden
关键词
D O I
10.1088/1751-8113/45/46/465301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we investigate a two-dimensional isotropic harmonic oscillator on a time-dependent spherical background. The effect of the background can be represented as a minimally coupled field to the oscillator's Hamiltonian. For a fluctuating background, transition probabilities per unit time are obtained. Transitions are possible if the energy eigenvalues of the oscillator E-i and frequencies of the fluctuating background omega(n) satisfy the following two simple relations: E-j similar or equal to E-i - (h) over bar omega(n) (stimulated emission) and E-j similar or equal to E-i + (h) over bar omega(n) (absorption). This indicates that a background fluctuating at a frequency of omega(n) interacts with the oscillator as a quantum field of the same frequency. We believe this result is also applicable for an arbitrary quantum system defined on a fluctuating maximally symmetric background.
引用
收藏
页数:8
相关论文
共 6 条
[1]   QUANTUM-MECHANICS OF A CONSTRAINED PARTICLE [J].
DACOSTA, RCT .
PHYSICAL REVIEW A, 1981, 23 (04) :1982-1987
[2]   DYNAMICAL SYMMETRIES IN A SPHERICAL GEOMETRY-I [J].
HIGGS, PW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (03) :309-323
[3]   Geometric approach to nonlinear coherent states using the Higgs model for harmonic oscillator [J].
Mahdifar, A. ;
Roknizadeh, R. ;
Naderi, M. H. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (22) :7003-7014
[4]   Optics in Curved Space [J].
Schultheiss, Vincent H. ;
Batz, Sascha ;
Szameit, Alexander ;
Dreisow, Felix ;
Nolte, Stefan ;
Tuennermann, Andreas ;
Longhi, Stefano ;
Peschel, Ulf .
PHYSICAL REVIEW LETTERS, 2010, 105 (14)
[5]  
Scully M.O., 2001, Quantum Optics
[6]  
Vogel W., 2006, Quantum Optics