Self-dual codes better than the Gilbert-Varshamov bound

被引:6
作者
Bassa, Alp [1 ]
Stichtenoth, Henning [2 ]
机构
[1] Bogazici Univ, Fac Arts & Sci, Dept Math, TR-34342 Istanbul, Turkey
[2] Sabanci Univ, MDBF, TR-34956 Istanbul, Turkey
关键词
Self-dual codes; Algebraic geometry codes; Gilbert-Varshamov Bound; Tsfasman-Vladut-Zink Bound; Towers of function fields; Asymptotically good codes; Quadratic forms; Witt's Theorem; 14G50; 94B27; 94B65; 15A63; 11T71;
D O I
10.1007/s10623-018-0497-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that every self-orthogonal code over Fq of length n can be extended to a self-dual code, if there exists self-dual codes of length n. Using a family of Galois towers of algebraic function fields we show that over any nonprime field Fq, with q64, except possibly q=125, there are infinite families of self-dual codes, which are asymptotically better than the asymptotic Gilbert-Varshamov bound.
引用
收藏
页码:173 / 182
页数:10
相关论文
共 9 条
  • [1] Galois towers over non-prime finite fields
    Bassa, Alp
    Beelen, Peter
    Garcia, Arnaldo
    Stichtenoth, Henning
    [J]. ACTA ARITHMETICA, 2014, 164 (02) : 163 - 179
  • [2] MacWilliams F. J., 1972, Discrete Mathematics, V3, P153, DOI 10.1016/0012-365X(72)90030-1
  • [3] SELF-DUAL CODES OVER GF(Q) SATISFY A MODIFIED VARSHAMOV-GILBERT BOUND
    PLESS, V
    PIERCE, JN
    [J]. INFORMATION AND CONTROL, 1973, 23 (01): : 35 - 40
  • [4] Pless V., 1968, J COMBINATORIAL THEO, V5, P215, DOI DOI 10.1016/S0021-9800(68)80067-5
  • [5] Pless V., 1964, Proc. Amer. Math. Soc., V15, P979
  • [6] Serre J.-P., 1973, COURSE ARITHMETIC, DOI DOI 10.1007/978-1-4684-9884-4
  • [7] Transitive and self-dual codes attaining the Tsfasman-Vladut-Zink bound
    Stichtenoth, H
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (05) : 2218 - 2224
  • [8] SELF-DUAL GOPPA CODES
    STICHTENOTH, H
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1988, 55 (1-2) : 199 - 211
  • [9] Stichtenoth H, 2009, GRAD TEXTS MATH, V254, P1