The number of limit cycles of a quintic polynomial system

被引:20
作者
Atabaigi, Ali [1 ]
Nyamoradi, Nemat [1 ]
Zangeneh, Hamid R. Z. [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
关键词
Zeros of Abelian integrals; Limit cycles; BIFURCATION;
D O I
10.1016/j.camwa.2008.10.079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the bifurcation of limit cycles of the system (x) over dot = y(x(2) - a(2))(y(2) - b(2)) + epsilon P(x, y), (y) over dot = -x(x(2) - a(2))(y(2) - b(2)) + epsilon Q(x, y) for epsilon sufficiently small, where a, b is an element of R - {0}, and P, Q are polynomials of degree n, we obtain that up to first order in epsilon the upper bounds for tile number oflimir cycles that bifurcate from the period annulus of the quintic center given by epsilon = 0 are (3/2)(n + sin(2)(n pi/2)) + 1 if a not equal b and n - 1 if a = b. Moreover, there are systems with at least (3/2)(n + sin(2)(n pi/2)) + 1 if a not equal b and , n - 1 limit cycles if a = b. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:677 / 684
页数:8
相关论文
共 14 条
[1]   BIFURCATION OF LIMIT-CYCLES FROM CENTERS AND SEPARATRIX CYCLES OF PLANAR ANALYTIC SYSTEMS [J].
BLOWS, TR ;
PERKO, LM .
SIAM REVIEW, 1994, 36 (03) :341-376
[2]   Limit cycles of a perturbed cubic polynomial differential center [J].
Buica, Adriana ;
Llibre, Jaume .
CHAOS SOLITONS & FRACTALS, 2007, 32 (03) :1059-1069
[3]  
Chow S. N., 1994, NORMAL FORMS BIFURCA
[4]  
Coll B, 2005, DYNAM CONT DIS SER A, V12, P275
[5]   On the number of limit cycles surrounding a unique singular point for polynomial differential systems of arbitrary degree [J].
Garcia, Belen ;
Llibre, Jaume ;
Perez del Rio, Jesus S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (12) :4461-4469
[6]   On the nonexistence, existence and uniqueness of limit cycles [J].
Giacomini, H ;
Llibre, J ;
Viano, M .
NONLINEARITY, 1996, 9 (02) :501-516
[7]  
LI C, 2001, EXTRACTA MATH, V16, P441
[8]   Averaging analysis of a perturbated quadratic center [J].
Llibre, J ;
del Río, JSP ;
Rodríguez, JA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (01) :45-51
[9]  
Llibre J, 2001, DYNAM CONT DIS SER A, V8, P161
[10]   Linear estimate for the number of limit cycles of a perturbed cubic polynomial differential system [J].
Llibre, Jaume ;
Wu, Hao ;
Yu, Jiang .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) :419-432