Understanding Urban Spatio-temporal Usage Patterns using Matrix Tensor Factorization

被引:4
|
作者
Balasubramaniam, Thirunavukarasu [1 ]
Nayak, Richi [1 ]
Yuen, Chau [2 ]
机构
[1] Queensland Univ Technol, Sch Elect Engn & Comp Sci, Brisbane, Qld, Australia
[2] Singapore Univ Technol & Design, Engn Prod Design, Singapore, Singapore
关键词
D O I
10.1109/ICDMW.2018.00216
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automated understanding of spatiotemporal usage patterns of real-world applications are significant in urban planning. With the capability of smartphones collecting various information using inbuilt sensors, the smart city data is enriched with multiple contexts. Whilst tensor factorization has been successfully used to capture latent factors (patterns) exhibited by the real-world datasets, the multifaceted nature of smart city data needs an improved modeling to utilize multiple contexts in sparse condition. Thus, in our ongoing research, we aim to model this data with a novel Matrix Tensor Factorization framework which imposes sparsity constraint to learn the true factors in sparse data. We also aim to develop a fast and efficient factorization algorithm to deal with the scalability problem persistent in the state-of-the-art factorization algorithms.
引用
收藏
页码:1497 / 1498
页数:2
相关论文
共 50 条
  • [41] Matrix Autoregressive Spatio-Temporal Models
    Hsu, Nan-Jung
    Huang, Hsin-Cheng
    Tsay, Ruey S.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (04) : 1143 - 1155
  • [42] Spatio-temporal interaction of urban crime
    Grubesic, Tony H.
    Mack, Elizabeth A.
    JOURNAL OF QUANTITATIVE CRIMINOLOGY, 2008, 24 (03) : 285 - 306
  • [43] Spatio-Temporal Interaction of Urban Crime
    Tony H. Grubesic
    Elizabeth A. Mack
    Journal of Quantitative Criminology, 2008, 24 : 285 - 306
  • [44] Spatio-Temporal Analysis for Understanding the Traffic Demand After the 2016 Kumamoto Earthquake Using Mobile Usage Data
    Urata, Junji
    Sasaki, Yasushi
    Iryo, Takamasa
    2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2018, : 2496 - 2503
  • [45] Spatio-Temporal Sensor Graphs (STSG): A data model for the discovery of spatio-temporal patterns
    George, Betsy
    Kang, James M.
    Shekhar, Shashi
    INTELLIGENT DATA ANALYSIS, 2009, 13 (03) : 457 - 475
  • [46] On the geometric structure of spatio-temporal patterns
    Barth, E
    Ferraro, M
    ALGEBRAIC FRAMES FOR THE PERCEPTION-ACTION CYCLE, PROCEEDINGS, 2000, 1888 : 134 - 143
  • [47] Control and adaptation of spatio-temporal patterns
    Diebner, HH
    Hoff, AA
    Mathias, A
    Prehn, H
    Rohrbach, M
    Sahle, S
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2001, 56 (9-10): : 663 - 669
  • [48] Spatio-temporal patterns of precipitation in Serbia
    Milan Gocic
    Slavisa Trajkovic
    Theoretical and Applied Climatology, 2014, 117 : 419 - 431
  • [49] EXTERNAL FORCING OF SPATIO-TEMPORAL PATTERNS
    WALGRAEF, D
    EUROPHYSICS LETTERS, 1988, 7 (06): : 485 - 491
  • [50] Decomposing spatio-temporal seismicity patterns
    Goltz, C.
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2001, 1 (1-2) : 83 - 92