A Modified Runge-Kutta-Nystrom Method by using Phase Lag Properties for the Numerical Solution of Orbital Problems

被引:150
作者
Papadopoulos, Dimitris F.
Simos, T. E. [1 ,2 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
[2] Univ Peloponnese, Fac Sci & Technol, Sci Computat Lab, Dept Comp Sci & Technol, GR-22100 Tripolis, Greece
来源
APPLIED MATHEMATICS & INFORMATION SCIENCES | 2013年 / 7卷 / 02期
关键词
Runge-Kutta-Nystrom methods; Orbital problems; Phase-fitted; Amplification-fitted; derivatives; initial value problems; oscillating solution; TRIGONOMETRICALLY-FITTED METHODS; RADIAL SCHRODINGER-EQUATION; OSCILLATING SOLUTIONS; 2ND-ORDER IVPS; ORDER;
D O I
10.12785/amis/070202
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new modified Runge-Kutta-Nystrom method of third algebraic order is developed. The new modified RKN method has phase-lag and amplification error of order infinity, also the first derivative of the phase lag is of order infinity. Numerical results indicate that the new method presented in this paper, is much more efficient than other methods of the same algebraic order, for the numerical integration of orbital problems.
引用
收藏
页码:433 / 437
页数:5
相关论文
共 28 条
[1]   A family of ten-step methods with vanished phase-lag and its first derivative for the numerical solution of the Schrodinger equation [J].
Alolyan, Ibraheem ;
Simos, T. E. .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2011, 49 (09) :1843-1888
[2]   High algebraic order methods with vanished phase-lag and its first derivative for the numerical solution of the Schrodinger equation [J].
Alolyan, Ibraheem ;
Simos, T. E. .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 48 (04) :925-958
[3]  
Anastassi Z.A., 2012, J COMPUTATIONAL APPL, V236
[4]   An optimized Runge-Kutta method for the solution of orbital problems [J].
Anastassi, ZA ;
Simos, TE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 175 (01) :1-9
[5]  
Franco J.M., 1990, J COMPUT APPL MATH, V30, P110
[6]   Exponentially fitted explicit Runge-Kutta-Nystrom methods [J].
Franco, JM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 167 (01) :1-19
[7]   Newton-Cotes formulae for long-time integration [J].
Kalogiratou, Z ;
Simos, TE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 158 (01) :75-82
[8]   Symplectic integrators for the numerical solution of the Schrodinger equation [J].
Kalogiratou, Z ;
Monovasilis, T ;
Simos, TE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 158 (01) :83-92
[9]   A generator of hybrid symmetric four-step methods for the numerical solution of the Schrodinger equation [J].
Konguetsof, A ;
Simos, TE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 158 (01) :93-106
[10]   A hybrid method with phase-lag and derivatives equal to zero for the numerical integration of the Schrodinger equation [J].
Konguetsof, A. .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2011, 49 (07) :1330-1356