Laser-induced reduction of graphene oxide powders by high pulsed ultraviolet laser irradiations

被引:44
作者
Yang, Chii-Rong [1 ]
Tseng, Shih-Feng [2 ]
Chen, Yu-Ting [1 ]
机构
[1] Natl Taiwan Normal Univ, Dept Mechatron Engn, Taipei 10610, Taiwan
[2] Natl Taipei Univ Technol, Dept Mech Engn, Taipei 10608, Taiwan
关键词
Laser-induced reduction; Graphene oxide powders; Raman spectroscopy; X-ray photoelectron spectroscopy; Surface area analyzer; LARGE-AREA; FILMS; LAYER; TRANSPARENT; GRAPHITE;
D O I
10.1016/j.apsusc.2018.03.090
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study aims to develop a laser-induced reduction approach for graphene oxide (GO) powders fabricated by using high pulsed ultraviolet laser irradiations. Before and after the laser irradiation with different fluences, the physical and electrical properties of homemade GO powders and reduced graphene oxide (rGO) powders were measured and analyzed using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), surface area analyzer, and four-point probe instrument. The laser irradiation parameters included the pulse repetition frequency of 100 kHz, the scanning speed of galvanometers of 50 mm/s, the number of laser irradiated cycles of 10, and the laser fluences of ranging from 0.153 mJ/cm(2) to 0.525 mJ/cm(2). The laser reduction experiments of GO powders demonstrated that the largest relative intensity of the 2D peak and specific surface area were found at the laser fluence of 0.438 mJ/cm(2). Moreover, the electrical resistance sharply decreased from 280 M Omega in the initial GO powders to 0.267 M Omega in rGO powders at a laser irradiation fluence of 0.438. The C/O ratio was increased from 0.232 in the initial GO powders to 1.86 in the rGO powders at a laser irradiation fluence of 0.525 mJ/cm(2); furthermore, the C/O ratios increased with increasing the laser fluences. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:578 / 583
页数:6
相关论文
共 28 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[4]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[5]   Production and processing of graphene and 2d crystals [J].
Bonaccorso, Francesco ;
Lombardo, Antonio ;
Hasan, Tawfique ;
Sun, Zhipei ;
Colombo, Luigi ;
Ferrari, Andrea C. .
MATERIALS TODAY, 2012, 15 (12) :564-589
[6]   Graphene-based thermoplastic composites and their application for LED thermal management [J].
Cho, Er-Chieh ;
Huang, Jui-Hsiung ;
Li, Chiu-Ping ;
Chang-Jian, Cai-Wan ;
Lee, Kuen-Chan ;
Hsiao, Yu-Sheng ;
Huang, Jen-Hsien .
CARBON, 2016, 102 :66-73
[7]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[8]   Few-layer graphene on SiC, pyrolitic graphite, and graphene:: A Raman scattering study [J].
Faugeras, C. ;
Nerriere, A. ;
Potemski, M. ;
Mahmood, A. ;
Dujardin, E. ;
Berger, C. ;
de Heer, W. A. .
APPLIED PHYSICS LETTERS, 2008, 92 (01)
[9]   Pulsed laser irradiation for environment friendly reduction of graphene oxide suspensions [J].
Ghadim, Ehsan Ezzatpour ;
Rashidi, Nasim ;
Kimiagar, Salimeh ;
Akhavan, Omid ;
Manouchehri, Firouzeh ;
Ghaderi, Elham .
APPLIED SURFACE SCIENCE, 2014, 301 :183-188
[10]   Organic solar cells with solution-processed graphene transparent electrodes [J].
Wu, Junbo ;
Becerril, Hector A. ;
Bao, Zhenan ;
Liu, Zunfeng ;
Chen, Yongsheng ;
Peumans, Peter .
APPLIED PHYSICS LETTERS, 2008, 92 (26)