Stabilization and optimization of linear systems via pathwise state-feedback impulsive control

被引:11
作者
Ai, Zidong [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Syst & Control, Beijing 100190, Peoples R China
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2017年 / 354卷 / 03期
关键词
SYNCHRONIZATION; WALKING; NETWORKS; CHAOS;
D O I
10.1016/j.jfranklin.2016.12.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we address the stabilization and optimization issues for a class of linear systems in terms of pathwise state-feedback impulsive control. The pathwise state-feedback impulsive mechanism is shown universal in that any asymptotically stabilizable system admits such impulsive control law making the system stable. To improve the system performance, we establish some conditions the optimal impulse instants should satisfy using variational method, and design gradient-based algorithms to search for optimal impulse instants. A schematic algorithm is further designed to compute a series of parameters and construct a new and better impulsive control law. Finally, a numerical example shows the efficiency of the proposed approach. (C) 2016 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1637 / 1657
页数:21
相关论文
共 29 条
[1]   Impulsive Stabilization and Impulsive Synchronization of Discrete-Time Delayed Neural Networks [J].
Chen, Wu-Hua ;
Lu, Xiaomei ;
Zheng, Wei Xing .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (04) :734-748
[2]   Adaptive impulsive synchronization of uncertain chaotic systems [J].
Chen, Yen-Sheng ;
Hwang, Robert R. ;
Chang, Chien-Cheng .
PHYSICS LETTERS A, 2010, 374 (22) :2254-2258
[3]   Measures and LMIs for Impulsive Nonlinear Optimal Control [J].
Claeys, Mathieu ;
Arzelier, Denis ;
Henrion, Didier ;
Lasserre, Jean-Bernard .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (05) :1374-1379
[4]   Sufficient LMI conditions for output feedback control problems [J].
Crusius, CAR ;
Trofino, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (05) :1053-1057
[5]  
DiBernardo M, 2008, APPL MATH SCI, V163, P1, DOI 10.1007/978-1-84628-708-4
[6]   Periodically multiple state-jumps impulsive control systems with impulse time windows [J].
Feng, Yuming ;
Li, Chuandong ;
Huang, Tingwen .
NEUROCOMPUTING, 2016, 193 :7-13
[7]   OGY-based control of chaos in semi-passive dynamic walking of a torso-driven biped robot [J].
Gritli, Hassene ;
Belghith, Safya ;
Khraief, Nahla .
NONLINEAR DYNAMICS, 2015, 79 (02) :1363-1384
[8]   Chaos control in passive walking dynamics of a compass-gait model [J].
Gritli, Hassene ;
Khraief, Nahla ;
Belghith, Safya .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (08) :2048-2065
[9]   Asymptotically stable walking for biped robots: Analysis via systems with impulse effects [J].
Grizzle, JW ;
Abba, G ;
Plestan, F .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (01) :51-64
[10]   Guaranteed performance consensus in second-order multi-agent systems with hybrid impulsive control [J].
Guan, Zhi-Hong ;
Hu, Bin ;
Chi, Ming ;
He, Ding-Xin ;
Cheng, Xin-Ming .
AUTOMATICA, 2014, 50 (09) :2415-2418