On the K-theory of twisted higher-rank-graph C*-algebras

被引:17
作者
Kumjian, Alex [1 ]
Pask, David [2 ]
Sims, Aidan [2 ]
机构
[1] Univ Nevada, Dept Math 084, Reno, NV 89557 USA
[2] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia
基金
澳大利亚研究理事会;
关键词
C*-algebra; Graph algebra; k-graph; K-theory;
D O I
10.1016/j.jmaa.2012.11.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the K-theory of twisted higher-rank-graph algebras by adapting parts of Elliott's computation of the K-theory of the rotation algebras. We show that each 2-cocycle on a higher-rank graph taking values in an abelian group determines a continuous bundle of twisted higher-rank graph algebras over the dual group. We use this to show that for a circle-valued 2-cocycle on a higher-rank graph obtained by exponentiating a real-valued cocycle, the K-theory of the twisted higher-rank graph algebra coincides with that of the untwisted one. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:104 / 113
页数:10
相关论文
共 27 条
[1]  
ANDERSON J, 1989, HOUSTON J MATH, V15, P1
[2]  
[Anonymous], 1984, Monogr. Stud. Math.
[3]  
Bates T., 2000, New York J. Maths., V6, P307
[4]   The K-theory of Heegaard-type quantum 3-spheres [J].
Baum, Paul F. ;
Hajac, Piotr M. ;
Matthes, Rainer ;
Szymanski, Wojciech .
K-THEORY, 2005, 35 (1-2) :159-186
[5]  
Blackadar B., 1986, K THEORY OPERATOR AL, pviii+338
[6]   Periodicity in Rank 2 Graph Algebras [J].
Davidson, Kenneth R. ;
Yang, Dilian .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2009, 61 (06) :1239-1261
[7]  
EVANS D.G., 2008, New York J. Math., V14, P1
[8]   When is the Cuntz-Krieger algebra of a higher-rank graph approximately finite-dimensional? [J].
Evans, D. Gwion ;
Sims, Aidan .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (01) :183-215
[9]   Higher-rank graph C*-algebras:: An inverse semigroup and groupoid approach [J].
Farthing, C ;
Muhly, PS ;
Yeend, T .
SEMIGROUP FORUM, 2005, 71 (02) :159-187
[10]   A locally trivial quantum Hopf fibration [J].
Hajac, Piotr M. ;
Matthes, Rainer ;
Szymanski, Wojciech .
ALGEBRAS AND REPRESENTATION THEORY, 2006, 9 (02) :121-146