FUSION OF SAR AND OPTICAL REMOTE SENSING DATA - CHALLENGES AND RECENT TRENDS

被引:0
|
作者
Schmitt, Michael [1 ]
Tupin, Florence [2 ]
Zhu, Xiao Xiang [1 ,3 ]
机构
[1] Tech Univ Munich, Signal Proc Earth Observat, Munich, Germany
[2] Univ Paris Saclay, Telecom ParisTech, LTCI, Paris, France
[3] German Aerosp Ctr DLR, Remote Sensing Technol Inst IMF, Wessling, Germany
来源
2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2017年
关键词
synthetic aperture radar (SAR); optical imagery; remote sensing; data fusion; ROAD NETWORK EXTRACTION; IMAGE REGISTRATION; MULTISENSOR DATA; TIME-SERIES; CLASSIFICATION; MISSION;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, we summarize challenges, proposed solutions and recent trends in the field of SAR-optical remote sensing data fusion. Although being a pre-processing step before the actual fusion-by-estimation, it is shown that matching and coregistration is one of the core challenges in that regard, which is mainly due to the strongly different geometric and radiometric properties of the two observation types. We then review some of the published fusion methods and discuss the future trends of this topic.
引用
收藏
页码:5458 / 5461
页数:4
相关论文
共 50 条
  • [41] Classification and change detection of vegetation in the Ruoergai Wetland using optical and SAR remote sensing data
    Ming Y.
    Liu Q.
    Bai H.
    Huang C.
    National Remote Sensing Bulletin, 2023, 27 (06) : 1414 - 1425
  • [42] OBSERVATION OF MESOSCALE EDDIES BY USING SAR DATA COMPLEMENTED WITH OPTICAL REMOTE SENSING AND IN SITU MEASUREMENTS
    Uiboupin, Rivo
    Laanemets, Jaan
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 224 - 227
  • [43] Big Data for Remote Sensing: Challenges and Opportunities
    Chi, Mingmin
    Plaza, Antonio
    Benediktsson, Jon Atli
    Sun, Zhongyi
    Shen, Jinsheng
    Zhu, Yangyong
    PROCEEDINGS OF THE IEEE, 2016, 104 (11) : 2207 - 2219
  • [44] Data handling challenges for remote sensing systems
    Coupe, JM
    2004 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOLS 1-6, 2004, : 2263 - 2268
  • [45] Mangrove monitoring and extraction based on multi-source remote sensing data: a deep learning method based on SAR and optical image fusion
    Xie, Yiheng
    Rui, Xiaoping
    Zou, Yarong
    Tang, Heng
    Ouyang, Ninglei
    ACTA OCEANOLOGICA SINICA, 2024, 43 (09) : 110 - 121
  • [46] Mangrove monitoring and extraction based on multi-source remote sensing data: a deep learning method based on SAR and optical image fusion
    Yiheng Xie
    Xiaoping Rui
    Yarong Zou
    Heng Tang
    Ninglei Ouyang
    Acta Oceanologica Sinica, 2024, 43 (09) : 110 - 121
  • [47] Application of remote sensing (optical and sar) to monitoring water resources
    Mardirossian, Garo
    WATER SUPPLY IN EMERGENCY SITUATIONS, 2007, : 115 - 123
  • [48] AI Security for Geoscience and Remote Sensing: Challenges and future trends
    Xu, Yonghao
    Bai, Tao
    Yu, Weikang
    Chang, Shizhen
    Atkinson, Peter M.
    Ghamisi, Pedram
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2023, 11 (02) : 60 - 85
  • [49] ON THE CHALLENGES IN STEREOGRAMMETRIC FUSION OF SAR AND OPTICAL IMAGERY FOR URBAN AREAS
    Schmitt, M.
    Zhu, X. X.
    XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 41 (B7): : 719 - 722
  • [50] CLOUD REMOVAL OF OPTICAL REMOTE SENSING IMAGERY WITH MULTITEMPORAL SAR-OPTICAL DATA USING X-MTGAN
    Xia, Yu
    Zhang, Hongyan
    Zhang, Liangpei
    Fan, Zhiyu
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3396 - 3399