FUSION OF SAR AND OPTICAL REMOTE SENSING DATA - CHALLENGES AND RECENT TRENDS

被引:0
|
作者
Schmitt, Michael [1 ]
Tupin, Florence [2 ]
Zhu, Xiao Xiang [1 ,3 ]
机构
[1] Tech Univ Munich, Signal Proc Earth Observat, Munich, Germany
[2] Univ Paris Saclay, Telecom ParisTech, LTCI, Paris, France
[3] German Aerosp Ctr DLR, Remote Sensing Technol Inst IMF, Wessling, Germany
来源
2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2017年
关键词
synthetic aperture radar (SAR); optical imagery; remote sensing; data fusion; ROAD NETWORK EXTRACTION; IMAGE REGISTRATION; MULTISENSOR DATA; TIME-SERIES; CLASSIFICATION; MISSION;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, we summarize challenges, proposed solutions and recent trends in the field of SAR-optical remote sensing data fusion. Although being a pre-processing step before the actual fusion-by-estimation, it is shown that matching and coregistration is one of the core challenges in that regard, which is mainly due to the strongly different geometric and radiometric properties of the two observation types. We then review some of the published fusion methods and discuss the future trends of this topic.
引用
收藏
页码:5458 / 5461
页数:4
相关论文
共 50 条
  • [21] OPTICAL AND SAR FUSION: HOW LADIES OF LANDSAT AND SISTERS OF SAR ARE WORKING TOGETHER TO ACHIEVE AN INCLUSIVE FUTURE IN REMOTE SENSING
    Crowley, Morgan A.
    Winkler, Klara J.
    Straub, Crista L.
    Fickas, Kate C.
    Suresh, Gopika
    Mendes, Flavia de Souza
    Reyes, Sheryl Rose
    Robertson, Laura Dingle
    Halabisky, Meghan
    Schenkein, Sarah F.
    Anokye, Matilda
    Dasgupta, Antara
    Banks, Sarah
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2305 - 2308
  • [22] Data-driven multi-source remote sensing data fusion: progress and challenges
    Zhang L.
    He J.
    Yang Q.
    Xiao Y.
    Yuan Q.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (07): : 1317 - 1337
  • [23] Cloud Removal of Optical Remote Sensing Imageries using SAR Data and Deep Learning
    Xiao, Xiao
    Lu, Yilong
    2021 7TH ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR), 2021,
  • [24] Image fusion of radar and optical remote sensing data for land cover classification
    Nsaibi, Maher
    Chaabane, Ferdaous
    2008 3RD INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES: FROM THEORY TO APPLICATIONS, VOLS 1-5, 2008, : 764 - 767
  • [25] Image acquisition geometry analysis for the fusion of optical and radar remote sensing data
    Palubinskas, Gintautas
    Reinartz, Peter
    Bamler, Richard
    INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2010, 1 (03) : 271 - 282
  • [26] Image and data fusion in remote sensing of urban areas: status issues and research trends
    Gamba, Paolo
    INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2014, 5 (01) : 2 - 12
  • [27] RECENT TRENDS IN CLASSIFICATION OF REMOTE SENSING DATA: ACTIVE AND SEMISUPERVISED MACHINE LEARNING PARADIGMS
    Bruzzone, Lorenzo
    Persello, Claudio
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 3720 - 3723
  • [28] Trends in Optical Commercial Remote Sensing Industry
    Navulur, Kumar
    Pacifici, Fabio
    Baugh, Bill
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (04): : 57 - 64
  • [29] Change Detection in Heterogeneous Optical and SAR Remote Sensing Images Via Deep Homogeneous Feature Fusion
    Jiang, Xiao
    Li, Gang
    Liu, Yu
    Zhang, Xiao-Ping
    He, You
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 (13) : 1551 - 1566
  • [30] DECISION-LEVEL FUSION FOR ROAD NETWORK EXTRACTION FROM SAR AND OPTICAL REMOTE SENSING IMAGES
    Xiao, Fanghong
    Tong, Ling
    Wen, Jiang
    Wang, Yuchuan
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7427 - 7430