The short variant of optic atrophy 1 (OPA1) improves cell survival under oxidative stress

被引:47
作者
Lee, Hakjoo [1 ]
Smith, Sylvia B. [2 ,3 ]
Sheu, Shey-Shing [4 ]
Yoon, Yisang [1 ]
机构
[1] Augusta Univ, Med Coll Georgia, Dept Physiol, 1120 15th St, Augusta, GA 30912 USA
[2] Augusta Univ, Med Coll Georgia, Dept Cellular Biol & Anat, Augusta, GA 30912 USA
[3] Augusta Univ, Med Coll Georgia, Culver Vis Discovery Inst, Augusta, GA 30912 USA
[4] Thomas Jefferson Univ, Dept Med, Ctr Translat Med, Sidney Kimmel Med Coll, Philadelphia, PA 19107 USA
基金
美国国家卫生研究院;
关键词
mitochondria; mitochondrial permeability transition (MPT); necrosis (necrotic death); reactive oxygen species (ROS); oxidative stress; mitochondrial dynamics; OPA1; optic atrophy 1 (OPA1); OMA1 zinc metallopeptidase; apoptosis; MITOCHONDRIAL PERMEABILITY TRANSITION; DYNAMIN-RELATED PROTEIN; CYTOCHROME-C; PROTEOLYTIC CLEAVAGE; OMA1; PROTEASE; CYCLOPHILIN-D; ATP SYNTHASE; APOPTOSIS; FUSION; DEATH;
D O I
10.1074/jbc.RA119.010983
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Optic atrophy 1 (OPA1) is a dynamin protein that mediates mitochondrial fusion at the inner membrane. OPA1 is also necessary for maintaining the cristae and thus essential for supporting cellular energetics. OPA1 exists as membrane-anchored long form (L-OPA1) and short form (S-OPA1) that lacks the transmembrane region and is generated by cleavage of L-OPA1. Mitochondrial dysfunction and cellular stresses activate the inner membrane?associated zinc metallopeptidase OMA1 that cleaves L-OPA1, causing S-OPA1 accumulation. The prevailing notion has been that L-OPA1 is the functional form, whereas S-OPA1 is an inactive cleavage product in mammals, and that stress-induced OPA1 cleavage causes mitochondrial fragmentation and sensitizes cells to death. However, S-OPA1 contains all functional domains of dynamin proteins, suggesting that it has a physiological role. Indeed, we recently demonstrated that S-OPA1 can maintain cristae and energetics through its GTPase activity, despite lacking fusion activity. Here, applying oxidant insult that induces OPA1 cleavage, we show that cells unable to generate S-OPA1 are more sensitive to this stress under obligatory respiratory conditions, leading to necrotic death. These findings indicate that L-OPA1 and S-OPA1 differ in maintaining mitochondrial function. Mechanistically, we found that cells that exclusively express L-OPA1 generate more superoxide and are more sensitive to Ca2+-induced mitochondrial permeability transition, suggesting that S-OPA1, and not L-OPA1, protects against cellular stress. Importantly, silencing of OMA1 expression increased oxidant-induced cell death, indicating that stress-induced OPA1 cleavage supports cell survival. Our findings suggest that S-OPA1 generation by OPA1 cleavage is a survival mechanism in stressed cells.
引用
收藏
页码:6543 / 6560
页数:18
相关论文
共 78 条
[21]   Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1 [J].
Ehses, Sarah ;
Raschke, Ines ;
Mancuso, Giuseppe ;
Bernacchia, Andrea ;
Geimer, Stefan ;
Tondera, Daniel ;
Martinou, Jean-Claude ;
Westermann, Benedikt ;
Rugarli, Elena I. ;
Langer, Thomas .
JOURNAL OF CELL BIOLOGY, 2009, 187 (07) :1023-1036
[22]   Inhibition of PARP prevents oxidant-induced necrosis but not apoptosis in LLC-PK1 cells [J].
Filipovic, DM ;
Meng, XM ;
Reeves, WB .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 1999, 277 (03) :F428-F436
[23]   OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion [J].
Frezza, Christian ;
Cipolat, Sara ;
de Brito, Olga Martins ;
Micaroni, Massimo ;
Beznoussenko, Galina V. ;
Rudka, Tomasz ;
Bartoli, Davide ;
Polishuck, Roman S. ;
Danial, Nika N. ;
De Strooper, Bart ;
Scorrano, Luca .
CELL, 2006, 126 (01) :177-189
[24]   Homocysteine-Mediated Modulation of Mitochondrial Dynamics in Retinal Ganglion Cells [J].
Ganapathy, Preethi S. ;
Perry, Richard L. ;
Tawfik, Amany ;
Smith, Robert M. ;
Perry, Elizabeth ;
Roon, Penny ;
Bozard, B. Renee ;
Ha, Yonju ;
Smith, Sylvia B. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2011, 52 (08) :5551-5558
[25]   Endogenous Elevation of Homocysteine Induces Retinal Neuron Death in the Cystathionine-β-Synthase Mutant Mouse [J].
Ganapathy, Preethi S. ;
Moister, Brent ;
Roon, Penny ;
Mysona, Barbara A. ;
Duplantier, Jennifer ;
Dun, Ying ;
Moister, Tracy K. V. E. ;
Farley, Marlena J. ;
Prasad, Puttur D. ;
Liu, Kebin ;
Smith, Sylvia B. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2009, 50 (09) :4460-4470
[26]   Dimers of mitochondrial ATP synthase form the permeability transition pore [J].
Giorgio, Valentina ;
von Stockum, Sophia ;
Antoniel, Manuela ;
Fabbro, Astrid ;
Fogolari, Federico ;
Forte, Michael ;
Glick, Gary D. ;
Petronilli, Valeria ;
Zoratti, Mario ;
Szabo, Ildiko ;
Lippe, Giovanna ;
Bernardi, Paolo .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (15) :5887-5892
[27]   Characterization of the necrotic cleavage of poly(ADP-ribose) polymerase (PARP-1): implication of lysosomal proteases [J].
Gobeil, S ;
Boucher, CC ;
Nadeau, D ;
Poirier, GG .
CELL DEATH AND DIFFERENTIATION, 2001, 8 (06) :588-594
[28]   Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage [J].
Griparic, Lorena ;
Kanazawa, Takayuki ;
van der Bliek, Alexander M. .
JOURNAL OF CELL BIOLOGY, 2007, 178 (05) :757-764
[29]   Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase [J].
Halestrap, AP ;
Woodfield, KY ;
Connern, CP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (06) :3346-3354
[30]   Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase [J].
He, Jiuya ;
Carroll, Joe ;
Ding, Shujing ;
Fearnley, Ian M. ;
Walker, John E. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (34) :9086-9091