Determining the Fermi level by absorption quenching of monolayer graphene by charge transfer doping

被引:16
作者
Adhikari, Subash [1 ,2 ]
Perello, David J. [1 ]
Biswas, Chandan [1 ]
Ghosh, Arunabha [1 ]
Van Luan, Nguyen [1 ]
Park, Jihoon [1 ]
Yao, Fei [1 ]
Rotkin, Slava V. [1 ,3 ]
Lee, Young Hee [1 ,2 ]
机构
[1] Inst Basic Sci, Ctr Integrated Nanostruct Phys, Suwon 16419, South Korea
[2] Sungkyunkwan Univ, Dept Phys, Dept Energy Sci, Suwon 16419, South Korea
[3] Lehigh Univ, Dept Phys, Ctr Adv Mat & Nanotechnol, Bldg 16, Bethlehem, PA 18015 USA
关键词
LAYER GRAPHENE; BORON-NITRIDE; SINGLE-LAYER; FIELD; SPECTROSCOPY; DOPANTS; STRAIN; FILMS; FOIL;
D O I
10.1039/c6nr05635k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
While optical properties of graphene in the visible region are solely defined by the frequency-independent fine structure constant, an onset of absorption has been observed in the infrared region due to Pauli blocking of interband transitions. Here, we report a complete absorption quenching in the infrared region by coating graphene with bis(trifluoromethanesulfonyl)amine (TFSA), an optically transparent p-type chemical dopant. The Fermi level downshift due to TFSA doping results in enhanced transmission in the infrared region proportional to the doping concentration. An absorption quenching onset method, developed in our work, to extract the Fermi level shift in pristine and doped graphene agrees with values extracted from Raman G-band and 2D-band shifts, Hall measurements and the binding energy shift observed in X-ray photo-electron spectroscopy. Performing simple UV-visible transmittance spectroscopy to obtain the absorption quenching onset of graphene also allows detection of environmental and substrate effects via Fermi level shift. Our method opens up the practical implementation of this unique phenomenon of graphene in future optoelectronic devices.
引用
收藏
页码:18710 / 18717
页数:8
相关论文
共 35 条
[1]   Role of Dopants in Long-Range Charge Carrier Transport for p-Type and n-Type Graphene Transparent Conducting Thin Films [J].
Bult, Justin B. ;
Crisp, Ryan ;
Perkins, Craig L. ;
Blackburn, Jeffrey L. .
ACS NANO, 2013, 7 (08) :7251-7261
[2]   Excitonic Fano Resonance in Free-Standing Graphene [J].
Chae, Dong-Hun ;
Utikal, Tobias ;
Weisenburger, Siegfried ;
Giessen, Harald ;
von Klitzing, Klaus ;
Lippitz, Markus ;
Smet, Jurgen .
NANO LETTERS, 2011, 11 (03) :1379-1382
[3]   Surface transfer doping of semiconductors [J].
Chen, Wei ;
Qi, Dongchen ;
Gao, Xingyu ;
Wee, Andrew Thye Shen .
PROGRESS IN SURFACE SCIENCE, 2009, 84 (9-10) :279-321
[4]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[5]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[6]   Doping Single-Layer Graphene with Aromatic Molecules [J].
Dong, Xiaochen ;
Fu, Dongliang ;
Fang, Wenjing ;
Shi, Yumeng ;
Chen, Peng ;
Li, Lain-Jong .
SMALL, 2009, 5 (12) :1422-1426
[7]  
Elias DC, 2011, NAT PHYS, V7, P701, DOI [10.1038/NPHYS2049, 10.1038/nphys2049]
[8]   Optical properties of graphene [J].
Falkovsky, L. A. .
INTERNATIONAL CONFERENCE ON THEORETICAL PHYSICS 'DUBNA-NANO2008', 2008, 129
[9]   Optical far-infrared properties of a graphene monolayer and multilayer [J].
Falkovsky, L. A. ;
Pershoguba, S. S. .
PHYSICAL REVIEW B, 2007, 76 (15)
[10]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)