Lipid-induced filamentous growth in Ustilago maydis

被引:93
作者
Klose, J
de Sá, MM
Kronstad, JW
机构
[1] Univ British Columbia, Dept Microbiol & Immunol, Biotechnol Lab, Vancouver, BC V6T 1Z3, Canada
[2] Univ British Columbia, Fac Agr Sci, Vancouver, BC V6T 1Z3, Canada
关键词
D O I
10.1111/j.1365-2958.2004.04019.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The phytopathogenic fungus Ustilago maydis is obligately dependent on infection of maize to complete the sexual phase of its life cycle. Mating interactions between haploid, budding cells establish an infectious filamentous cell type that invades the host, induces large tumours and eventually forms large masses of black spores. The ability to switch from budding to filamentous growth is therefore critical for infection and completion of the life cycle, although the signals that influence the transition have not been identified from the host or the environment. We have found that growth in the presence of lipids promotes a filamentous phenotype that resembles the infectious cell type found in planta. In addition, the ability of the fungus to respond to lipids is dependent on both the cAMP signalling pathway and a Ras/MAPK pathway; these pathways are known to regulate mating, filamentous growth and pathogenesis in U. maydis. Overall, these results lead us to hypothesize that lipids may represent one of the signals that promote and maintain the filamentous growth of the fungus in the host environment.
引用
收藏
页码:823 / 835
页数:13
相关论文
共 80 条
[1]   The Ustilago maydis ubc4 and ubc5 genes encode members of a MAP kinase cascade required for filamentous growth [J].
Andrews, DL ;
Egan, JD ;
Mayorga, ME ;
Gold, SE .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2000, 13 (07) :781-786
[2]  
Banuett F, 1996, DEVELOPMENT, V122, P2965
[3]   IDENTIFICATION OF FUZ7, A USTILAGO-MAYDIS MEK/MAPKK HOMOLOG REQUIRED FOR A-LOCUS-DEPENDENT AND A-LOCUS-INDEPENDENT STEPS IN THE FUNGAL LIFE-CYCLE [J].
BANUETT, F ;
HERSKOWITZ, I .
GENES & DEVELOPMENT, 1994, 8 (12) :1367-1378
[4]   IDENTIFICATION AND COMPLEMENTATION OF A MUTATION TO CONSTITUTIVE FILAMENTOUS GROWTH IN USTILAGO-MAYDIS [J].
BARRETT, KJ ;
GOLD, SE ;
KRONSTAD, JW .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1993, 6 (03) :274-283
[5]   Characterization of a Ustilago maydis gene specifically induced during the biotrophic phase:: Evidence for negative as well as positive regulation [J].
Basse, CW ;
Stumpferl, S ;
Kahmann, R .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (01) :329-339
[6]  
Berto P, 1999, FEMS MICROBIOL LETT, V180, P183, DOI 10.1111/j.1574-6968.1999.tb08794.x
[7]   A FACTOR THAT PROMOTES MYCELIAL DEVELOPMENT IN SPORISORIUM-REILIANUM INVITRO [J].
BHASKARAN, S ;
SMITH, RH ;
FREDERIKSEN, RA .
BOTANICAL GAZETTE, 1991, 152 (04) :453-459
[8]  
BOOTHROYD B, 1956, CAN J BIOCHEM PHYS, V34, P10
[9]   Identification of genes in the bW/bE regulatory cascade in Ustilago maydis [J].
Brachmann, A ;
Weinzierl, G ;
Kämper, J ;
Kahmann, R .
MOLECULAR MICROBIOLOGY, 2001, 42 (04) :1047-1063
[10]   Genetic connection between fatty acid metabolism and sporulation in Aspergillus nidulans [J].
Calvo, AM ;
Gardner, HW ;
Keller, NP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (28) :25766-25774