Mechanical modeling of battery separator based on microstructure image analysis and stochastic characterization

被引:35
作者
Xu, Hongyi [1 ]
Zhu, Min [1 ]
Marcicki, James [1 ]
Yang, Xiao Guang [1 ]
机构
[1] Ford Motor Co, Res Adv Engn, Dearborn, MI 48121 USA
关键词
Battery separator; Microstructure characterization; RVE; FEA; Mechanical properties; REPRESENTATIVE VOLUME ELEMENTS; 3-DIMENSIONAL CHARACTERIZATION; ION; RECONSTRUCTION; BEHAVIOR; ELECTROLYTE; DISPERSION; COMPOSITE; PROPERTY; SIZE;
D O I
10.1016/j.jpowsour.2017.02.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A microstructure-based modeling method is developed to predict the mechanical behaviors of lithium ion battery separators. Existing battery separator modeling methods cannot capture the structural features on the microscale. To overcome this issue, we propose an image-based microstructure Representative Volume Element (RVE) modeling method, which facilitates the understanding of the separators complex macro mechanical behaviors from the perspective of microstructural features. A generic image processing workflow is developed to identify different phases in the microscopic image. The processed RVE image supplies microstructural information to the Finite Element Analysis (FEA). Both mechanical behavior and microstructure evolution are obtained from the simulation. The evolution of microstructure features is quantified using the stochastic microstructure characterization methods. The proposed method successfully captures the anisotropic behavior of the separator under tensile test, and provides insights into the microstructure deformation, such as the growth of voids. We apply the proposed method to a commercially available separator as the demonstration. The analysis results are validated using experimental testing results that are reported in literature. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:137 / 145
页数:9
相关论文
共 41 条
[11]  
Hang F., 2009, MRS Online Proceedings Library Archive, P1185
[12]   Toward the development of a quantitative tool for predicting dispersion of nanocomposites under non-equilibrium processing conditions [J].
Hassinger, Irene ;
Li, Xiaolin ;
Zhao, He ;
Xu, Hongyi ;
Huang, Yanhui ;
Prasad, Aditya ;
Schadler, Linda ;
Chen, Wei ;
Brinson, L. Catherine .
JOURNAL OF MATERIALS SCIENCE, 2016, 51 (09) :4238-4249
[14]   Prediction of particle size distribution effects on thermal conductivity of particulate composites [J].
Holotescu, S. ;
Stoian, F. D. .
MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2011, 42 (05) :379-385
[15]   The effects of aspect ratio of inorganic fillers on the structure and property of composite ion-exchange membranes [J].
Klaysom, Chalida ;
Moon, Seung-Hyeon ;
Ladewig, Bradley P. ;
Lu, G. Q. Max ;
Wang, Lianzhou .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2011, 363 (02) :431-439
[16]   Mechanical behavior of representative volume elements of lithium-ion battery modules under various loading conditions [J].
Lai, Wei-Jen ;
Ali, Mohammed Yusuf ;
Pan, Jwo .
JOURNAL OF POWER SOURCES, 2014, 248 :789-808
[17]   Mechanical behavior of representative volume elements of lithium-ion battery cells under compressive loading conditions [J].
Lai, Wei-Jen ;
Ali, Mohammed Yusuf ;
Pan, Jwo .
JOURNAL OF POWER SOURCES, 2014, 245 :609-623
[18]   Computational microstructure characterization and reconstruction for stochastic multiscale material design [J].
Liu, Yu ;
Greene, M. Steven ;
Chen, Wei ;
Dikin, Dmitriy A. ;
Liu, Wing Kam .
COMPUTER-AIDED DESIGN, 2013, 45 (01) :65-76
[19]   Microstructure Evolution in Lithium-Ion Battery Electrode Processing [J].
Liu, Zhixiao ;
Mukherjee, Partha P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (08) :E3248-E3258
[20]   Effect of Interfacial Energetics on Dispersion and Glass Transition Temperature in Polymer Nanocomposites [J].
Natarajan, Bharath ;
Li, Yang ;
Deng, Hua ;
Brinson, L. Catherine ;
Schadler, Linda S. .
MACROMOLECULES, 2013, 46 (07) :2833-2841