Nuclear medium cooling scenario in light of new Cas A cooling data and the 2M⊙ pulsar mass measurements

被引:50
作者
Blaschke, D. [1 ,2 ]
Grigorian, H. [3 ,4 ]
Voskresensky, D. N. [5 ]
机构
[1] Univ Wroclaw, Inst Theoret Phys, PL-50204 Wroclaw, Poland
[2] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia
[3] Yerevan State Univ, Dept Theoret Phys, Yerevan 375025, Armenia
[4] Joint Inst Nucl Res, Informat Technol Lab, Dubna 141980, Russia
[5] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia
来源
PHYSICAL REVIEW C | 2013年 / 88卷 / 06期
关键词
NEUTRON-STAR; THERMAL-CONDUCTIVITY; CASSIOPEIA; EMISSION; SUPERFLUID; LUMINOSITY; MATTER; EMISSIVITIES; EXCITATIONS; EQUATION;
D O I
10.1103/PhysRevC.88.065805
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Recently, Elshamounty et al. performed a reanalysis of the surface temperature of the neutron star in the supernova remnant Cassiopeia A on the basis of Chandra data measured during the last decade and added a new data point. We show that all reliably known temperature data of neutron stars including those belonging to Cassiopeia A can be comfortably explained in our "nuclear medium cooling" scenario of neutron stars. The cooling rates account for medium-modified one-pion exchange in dense matter, polarization effects in the pair-breaking-formation processes operating on superfluid neutrons and protons paired in the 1S(0) state, and other relevant processes. The emissivity of the pair-breaking-formation process in the 3P(2) state is a tiny quantity within our scenario. Crucial for a successful description of the Cassiopeia A cooling proves to be the thermal conductivity from both the electrons and nucleons being reduced by medium effects. Moreover, we exploit an equation of state which stiffens at high densities due to an excluded volume effect and is capable of describing a maximum mass of 2.1M(circle dot), thus including the recent measurements of PSR J1614-2230 and PSR J0348+0432.
引用
收藏
页数:10
相关论文
共 68 条
[1]   EFFECTIVE INTERACTIONS AND SUPERFLUID ENERGY GAPS FOR LOW-DENSITY NEUTRON MATTER [J].
AINSWORTH, TL ;
WAMBACH, J ;
PINES, D .
PHYSICS LETTERS B, 1989, 222 (02) :173-178
[2]   Equation of state of nucleon matter and neutron star structure [J].
Akmal, A ;
Pandharipande, VR ;
Ravenhall, DG .
PHYSICAL REVIEW C, 1998, 58 (03) :1804-1828
[3]   A Massive Pulsar in a Compact Relativistic Binary [J].
Antoniadis, John ;
Freire, Paulo C. C. ;
Wex, Norbert ;
Tauris, Thomas M. ;
Lynch, Ryan S. ;
van Kerkwijk, Marten H. ;
Kramer, Michael ;
Bassa, Cees ;
Dhillon, Vik S. ;
Driebe, Thomas ;
Hessels, Jason W. T. ;
Kaspi, Victoria M. ;
Kondratiev, Vladislav I. ;
Langer, Norbert ;
Marsh, Thomas R. ;
McLaughlin, Maura A. ;
Pennucci, Timothy T. ;
Ransom, Scott M. ;
Stairs, Ingrid H. ;
van Leeuwen, Joeri ;
Verbiest, Joris P. W. ;
Whelan, David G. .
SCIENCE, 2013, 340 (6131) :448
[4]  
Ashworth W. B. Jr., 1980, Journal for the History of Astronomy, V11, P1
[5]   Thermal conductivity of neutrons in neutron star cores [J].
Baiko, DA ;
Haensel, P ;
Yakovlev, DG .
ASTRONOMY & ASTROPHYSICS, 2001, 374 (01) :151-163
[6]   Proton pairing in neutron stars [J].
Baldo, M. ;
Schulze, H. -J. .
PHYSICAL REVIEW C, 2007, 75 (02)
[7]   Cooling of neutron stars. Hadronic model [J].
Blaschke, D ;
Grigorian, H ;
Voskresensky, DN .
ASTRONOMY & ASTROPHYSICS, 2004, 424 (03) :979-992
[8]   Cooling of the neutron star in Cassiopeia A [J].
Blaschke, D. ;
Grigorian, H. ;
Voskresensky, D. N. ;
Weber, F. .
PHYSICAL REVIEW C, 2012, 85 (02)
[9]   NUCLEAR IN-MEDIUM EFFECTS AND NEUTRINO EMISSIVITY OF NEUTRON-STARS [J].
BLASCHKE, D ;
ROPKE, G ;
SCHULZ, H ;
SEDRAKIAN, AD ;
VOSKRESENSKY, DN .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1995, 273 (03) :596-602
[10]   Determination of the equation of state of dense matter [J].
Danielewicz, P ;
Lacey, R ;
Lynch, WG .
SCIENCE, 2002, 298 (5598) :1592-1596