The Dirichlet heat kernel in inner uniform domains: Local results, compact domains and non-symmetric forms

被引:12
作者
Lierl, Janna [1 ]
Saloff-Coste, Laurent [2 ]
机构
[1] Inst Angew Math, D-53115 Bonn, Germany
[2] Cornell Univ, Ithaca, NY 14853 USA
关键词
Heat equation; Heat kernel; Dirichlet condition; Inner uniform domains; Harnack inequality; Ultracontractivity; INTRINSIC ULTRACONTRACTIVITY; SCHRODINGER-OPERATORS; LIPSCHITZ-DOMAINS; SPACES; EXTERIOR;
D O I
10.1016/j.jfa.2014.01.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper provides sharp Dirichlet heat kernel estimates in inner uniform domains, including bounded inner uniform domains, in the context of certain (possibly non-symmetric) bilinear forms resembling Dirichlet forms. For instance, the results apply to the Dirichlet heat kernel associated with a uniformly elliptic divergence form operator with symmetric second order part and bounded measurable real coefficients in inner uniform domains in R-n. The results are applicable to any convex domain, to the complement of any convex domain, and to more exotic examples such as the interior and exterior of the snowflake. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:4189 / 4235
页数:47
相关论文
共 35 条
[1]   Potential-theoretic characterizations of nonsmooth domains [J].
Aikawa, H .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 :469-482
[2]  
[Anonymous], ALGEBRA GEOMETRY ANA
[3]  
[Anonymous], PROGR PROBAB
[4]  
[Anonymous], SIBIRSK MAT ZH
[5]  
[Anonymous], 2012, LONDON MATH SOC MONO
[6]  
[Anonymous], PARABOLIC HARN UNPUB
[7]  
[Anonymous], GEOMETRY ANAL DIRICH
[8]  
[Anonymous], 1992, RES NOTICES, DOI DOI 10.1155/S1073792892000047
[9]  
[Anonymous], OSAKA J MAT IN PRESS
[10]  
[Anonymous], 1994, DIRICHLET FORMS SYMM