Asymptotic Expansions for Products of Characteristic Functions Under Moment Assumptions of Non-integer Orders

被引:10
作者
Bobkov, Sergey G. [1 ]
机构
[1] Univ Minnesota, Minneapolis, MN 55455 USA
来源
CONVEXITY AND CONCENTRATION | 2017年 / 161卷
关键词
LOCAL LIMIT-THEOREMS; NONUNIFORM BOUNDS; INEQUALITIES;
D O I
10.1007/978-1-4939-7005-6_11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is mostly a review of results and proofs related to asymptotic expansions for characteristic functions of sums of independent random variables (known also as Edgeworth-type expansions). A number of known results is refined in terms of Lyapunov coefficients of non-integer orders.
引用
收藏
页码:297 / 357
页数:61
相关论文
共 38 条
  • [1] [Anonymous], VESTNIK LENINGRAD U
  • [2] Bhattacharya Rabi N., 2010, Society for Industrial and Applied Mathematics
  • [3] Bikjalis A., 1973, MATH STAT PROBABILIT, V7, P149
  • [4] Proximity of probability distributions in terms of Fourier-Stieltjes transforms
    Bobkov, S. G.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2016, 71 (06) : 1021 - 1079
  • [5] Non-Uniform Bounds in Local Limit Theorems in Case of Fractional Moments. II
    Bobkov, S. G.
    Chistyakov, G. P.
    Goetze, F.
    [J]. MATHEMATICAL METHODS OF STATISTICS, 2011, 20 (04) : 269 - 287
  • [6] Non-Uniform Bounds in Local Limit Theorems in Case of Fractional Moments. I
    Bobkov, S. G.
    Chistyakov, G. P.
    Goetze, F.
    [J]. MATHEMATICAL METHODS OF STATISTICS, 2011, 20 (03) : 171 - 191
  • [7] Fisher information and the central limit theorem
    Bobkov, Sergey G.
    Chistyakov, Gennadiy P.
    Goetze, Friedrich
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2014, 159 (1-2) : 1 - 59
  • [8] RATE OF CONVERGENCE AND EDGEWORTH-TYPE EXPANSION IN THE ENTROPIC CENTRAL LIMIT THEOREM
    Bobkov, Sergey G.
    Chistyakov, Gennadiy P.
    Goetze, Friedrich
    [J]. ANNALS OF PROBABILITY, 2013, 41 (04) : 2479 - 2512
  • [9] CRAMER H, 1937, CAMBRIDGE TRACTS MAT
  • [10] Esseen C G., 1945, ACTA MATH, V77, P1, DOI DOI 10.1007/BF02392223