III-V Oxidation: Discoveries and Applications in Vertical-Cavity Surface-Emitting Lasers

被引:34
作者
Dallesasse, John M. [1 ]
Deppe, Dennis G. [2 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Univ Cent Florida, CREOL Coll Opt & Photon, Orlando, FL 32816 USA
关键词
III-V semiconductor materials; metal-oxide-semiconductor (MOS) devices; metal-oxide-semiconductor field-effect transistors (MOSFETs); optical device fabrication; optical fiber devices; optical fiber networks; optical interconnections; optical transmitters; quantum-well (QW) lasers; semiconductor devices; semiconductor lasers; surface-emitting lasers (SELs); vertical-cavity surface-emitting lasers (VCSELs); ROOM-TEMPERATURE; SINGLE-CRYSTAL; LIGHT EMISSION; GAAS; ALAS; MULTILAYERS; REFLECTORS; ALXGA1-XAS; OPERATION;
D O I
10.1109/JPROC.2013.2274931
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Since the discovery of III-V oxidation by Dallesasse and Holonyak in 1989, significant progress has been made, both technically and commercially, on the use of oxides in compound semiconductor devices. The process-induced modification of refractive index and conductivity allows control of the two carriers of information in optoelectronic systems, the photon and the electron, enabling wide-ranging device applications. Of great technical and commercial importance has been the use of oxidation for the fabrication of high-speed vertical-cavity surface-emitting lasers (VCSELs), first implemented by Deppe's group at The University of Texas at Austin (Austin, TX, USA). Here, the low refractive index III-V oxide's interaction with the optical modes inside the VCSEL creates an optimal overlap of gain and field, enabling lasers with ultralow threshold currents and desirable optical beam properties. The discovery of III-V oxidation, key technical milestones in the fabrication of photonic and electronic devices that use oxidation, and the application to VCSELs are reviewed.
引用
收藏
页码:2234 / 2242
页数:9
相关论文
共 41 条
[1]  
Basov N. G., 1964, SOV PHYS DOKL, V9, P288
[2]   ALXGA1-XAS-GAAS METAL-OXIDE-SEMICONDUCTOR FIELD-EFFECT TRANSISTORS FORMED BY LATERAL WATER-VAPOR OXIDATION OF ALAS [J].
CHEN, EI ;
HOLONYAK, N ;
MARANOWSKI, SA .
APPLIED PHYSICS LETTERS, 1995, 66 (20) :2688-2690
[3]   LOW-THRESHOLD VOLTAGE VERTICAL-CAVITY LASERS FABRICATED BY SELECTIVE OXIDATION [J].
CHOQUETTE, KD ;
SCHNEIDER, RP ;
LEAR, KL ;
GEIB, KM .
ELECTRONICS LETTERS, 1994, 30 (24) :2043-2044
[4]   STABILITY OF ALAS IN ALXGA1-XAS-ALAS-GAAS QUANTUM-WELL HETEROSTRUCTURES [J].
DALLESASSE, JM ;
GAVRILOVIC, P ;
HOLONYAK, N ;
KALISKI, RW ;
NAM, DW ;
VESELY, EJ ;
BURNHAM, RD .
APPLIED PHYSICS LETTERS, 1990, 56 (24) :2436-2438
[5]   NATIVE-OXIDE STRIPE-GEOMETRY ALXGA1-XAS-GAAS QUANTUM-WELL HETEROSTRUCTURE LASERS [J].
DALLESASSE, JM ;
HOLONYAK, N .
APPLIED PHYSICS LETTERS, 1991, 58 (04) :394-396
[6]   HYDROLYZATION OXIDATION OF ALXGA1-XAS-ALAS-GAAS QUANTUM-WELL HETEROSTRUCTURES AND SUPERLATTICES [J].
DALLESASSE, JM ;
HOLONYAK, N ;
SUGG, AR ;
RICHARD, TA ;
ELZEIN, N .
APPLIED PHYSICS LETTERS, 1990, 57 (26) :2844-2846
[7]   NATIVE-OXIDE-DEFINED COUPLED-STRIPE ALXGA1-XAS-GAAS QUANTUM-WELL HETEROSTRUCTURE LASERS [J].
DALLESASSE, JM ;
HOLONYAK, N ;
HALL, DC ;
ELZEIN, N ;
SUGG, AR ;
SMITH, SC ;
BURNHAM, RD .
APPLIED PHYSICS LETTERS, 1991, 58 (08) :834-836
[8]   ROOM-TEMPERATURE OPERATION OF GA(1-X)ALXAS-GAAS DOUBLE-HETEROSTRUCTURE LASERS GROWN BY METALORGANIC CHEMICAL VAPOR-DEPOSITION [J].
DUPUIS, RD ;
DAPKUS, PD .
APPLIED PHYSICS LETTERS, 1977, 31 (07) :466-468
[9]   SINGLE-CRYSTAL, EPITAXIAL MULTILAYERS OF ALAS, GAAS, AND ALXGA1-XAS FOR USE AS OPTICAL INTERFEROMETRIC ELEMENTS [J].
GOURLEY, PL ;
DRUMMOND, TJ .
APPLIED PHYSICS LETTERS, 1986, 49 (09) :489-491
[10]   VISIBLE, ROOM-TEMPERATURE, SURFACE-EMITTING LASER USING AN EPITAXIAL FABRY-PEROT RESONATOR WITH ALGAAS/ALAS QUARTER-WAVE HIGH REFLECTORS AND ALGAAS/GAAS MULTIPLE QUANTUM-WELLS [J].
GOURLEY, PL ;
DRUMMOND, TJ .
APPLIED PHYSICS LETTERS, 1987, 50 (18) :1225-1227