Reliable and efficient residual-based a posteriori error estimates are established for the stabilised locking-free finite element methods for the Reissner-Mindlin plate model. The error is estimated by a computable error estimator from above and below up to multiplicative constants that do neither depend on the mesh-size nor on the plate's thickness and are uniform for a wide range of stabilisation parameter. The error is controlled in norms that are known to converge to zero in a quasi-optimal way. An adaptive algorithm is suggested and run for improving the convergence rates in three numerical examples for thicknesses 0.1, .001 and .001.