Superpolynomial lower bounds for monotone span programs

被引:59
作者
Babai, L [1 ]
Gál, A
Wigderson, A
机构
[1] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[2] Hebrew Univ Jerusalem, Inst Comp Sci, Jerusalem, Israel
[3] Univ Texas, Dept Comp Sci, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s004930050058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we obtain the first superpolynomial lower bounds for monotone span programs computing explicit functions. The best previous lower bound was Omega(n(5/2)) by Beimel, Gal, Paterson [7]; our proof exploits a general combinatorial lower bound criterion from that paper. Our lower bounds are based on an analysis of Paley-type bipartite graphs via Weil's character sum estimates. We prove an n(Omega(log n/log log n)) lower bound for the size of monotone span programs for the clique problem. Our results give the first superpolynomial lower bounds for linear secret sharing schemes. We demonstrate the surprising power of monotone span programs by exhibiting a function computable in this model in linear size while requiring superpolynomial size monotone circuits and exponential size monotone formulae. We also show that the perfect matching function can be computed by polynomial size (non-monotone) span programs over arbitrary fields.
引用
收藏
页码:301 / 319
页数:19
相关论文
共 46 条
[1]  
Allender E., 1996, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, P161, DOI 10.1145/237814.237856
[2]   SIMPLE CONSTRUCTIONS OF ALMOST K-WISE INDEPENDENT RANDOM-VARIABLES [J].
ALON, N ;
GOLDREICH, O ;
HASTAD, J ;
PERALTA, R .
RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (03) :289-304
[3]   THE MONOTONE CIRCUIT COMPLEXITY OF BOOLEAN FUNCTIONS [J].
ALON, N ;
BOPPANA, RB .
COMBINATORICA, 1987, 7 (01) :1-22
[4]  
[Anonymous], 1996, Studia Sci. Math. Hungar., V32, P429
[5]   Approximating probability distributions using small sample spaces [J].
Azar, Y ;
Motwani, R ;
Naor, J .
COMBINATORICA, 1998, 18 (02) :151-171
[6]  
Babai L., 1996, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, P603, DOI 10.1145/237814.238010
[7]  
Babai L, 1986, P 27 IEEE FOCS, P337, DOI DOI 10.1109/SFCS.1986.15
[8]   Lower bounds for monotone span programs [J].
Beimel, A ;
Gal, A ;
Paterson, M .
COMPUTATIONAL COMPLEXITY, 1996, 6 (01) :29-45
[9]  
Beimel A, 1995, AN S FDN CO, P674, DOI 10.1109/SFCS.1995.492669
[10]   ON COMPUTING THE DETERMINANT IN SMALL PARALLEL TIME USING A SMALL NUMBER OF PROCESSORS [J].
BERKOWITZ, SJ .
INFORMATION PROCESSING LETTERS, 1984, 18 (03) :147-150