Continuum Limit of Susceptibility from Strong Coupling Expansion

被引:1
作者
Yamada, Hirofumi [1 ]
机构
[1] Chiba Inst Technol, Div Math & Sci, Narashino, Chiba 2750023, Japan
关键词
Strong-coupling expansion; Pade-Borel approximants; Nonlinear sigma model; Susceptibility; NONLINEAR SIGMA-MODEL; N-VECTOR MODEL; EXACT MASS GAP; MONTE-CARLO; RENORMALIZATION; LATTICE; O(N); FERROMAGNETS; PREDICTIONS; DIMENSIONS;
D O I
10.1007/s13538-012-0098-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
On the basis of a strong-coupling expansion, we reinvestigate the scaling behavior of the susceptibility chi of the two-dimensional O(N) sigma model on the square lattice with Pad,-Borel approximants. To exploit the Borel transform, we express the bare coupling g in a series expansion in chi. For large N, the Pad,-Borel approximants exhibit scaling behavior at the four-loop level. We estimate the nonperturbative constant associated with the susceptibility for N a parts per thousand yenaEuro parts per thousand 3 and compare the results with previous analytica l results and Monte Carlo data.
引用
收藏
页码:445 / 451
页数:7
相关论文
共 19 条
[1]   Four-loop perturbative expansion for the lattice N-vector model (vol B455, pg 619, 1995) [J].
Allés, B ;
Caracciolo, S ;
Pelissetto, A ;
Pepe, M .
NUCLEAR PHYSICS B, 1999, 562 (03) :581-583
[2]   Perturbation theory predictions and Monte Carlo simulations for the 2D O(n) non-linear sigma-models [J].
Alles, B ;
Buonanno, A ;
Cella, G .
NUCLEAR PHYSICS B, 1997, 500 (1-3) :513-543
[3]   The puzzle of apparent linear lattice artifacts in the 2d non-linear σ-model and Symanzik's solution [J].
Balog, Janos ;
Niedermayer, Ferenc ;
Weisz, Peter .
NUCLEAR PHYSICS B, 2010, 824 (03) :563-615
[4]   Logarithmic corrections to O(a2) lattice artifacts [J].
Balog, Janos ;
Niedermayer, Ferenc ;
Weisz, Peter .
PHYSICS LETTERS B, 2009, 676 (4-5) :188-192
[5]   PHASE-TRANSITION IN NONLINEAR SIGMA MODEL IN A (2+ EPSILON-DIMENSIONAL CONTINUUM [J].
BARDEEN, WA ;
LEE, BW ;
SHROCK, RE .
PHYSICAL REVIEW D, 1976, 14 (04) :985-1005
[6]   RENORMALIZATION OF NONLINEAR SIGMA-MODEL IN 2+ EPSILON-DIMENSIONS-APPLICATION TO HEISENBERG FERROMAGNETS [J].
BREZIN, E ;
ZINJUSTIN, J .
PHYSICAL REVIEW LETTERS, 1976, 36 (13) :691-694
[7]   RENORMALIZATION OF NONLINEAR SIGMA MODEL IN 2 + EPSILON DIMENSIONS [J].
BREZIN, E ;
ZINNJUSTIN, J ;
GUILLOU, JCL .
PHYSICAL REVIEW D, 1976, 14 (10) :2615-2621
[8]   Perturbative renormalization, group, exact results, and high-temperature series to order 21 for the N-vector spin models on the square lattice [J].
Butera, P ;
Comi, M .
PHYSICAL REVIEW B, 1996, 54 (22) :15828-15848
[9]   Strong-coupling analysis of two-dimensional O(N) a models with N>=3 on square, triangular, and honeycomb lattices [J].
Campostrini, M ;
Pelissetto, A ;
Rossi, P ;
Vicari, E .
PHYSICAL REVIEW D, 1996, 54 (02) :1782-1808
[10]   4-LOOP PERTURBATIVE EXPANSION FOR THE LATTICE N-VECTOR MODEL [J].
CARACCIOLO, S ;
PELISSETTO, A .
NUCLEAR PHYSICS B, 1995, 455 (03) :619-647