Characterization of the solution to a constrained H∞ optimal control problem

被引:23
作者
Mayne, DQ [1 ]
Rakovic, SV
Vinter, RB
Kerrigan, EC
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London, England
[2] Imperial Coll London, Dept Aeronaut, London, England
基金
英国工程与自然科学研究理事会;
关键词
min-max; constrained; H-infinity; parametric optimization; optimal control;
D O I
10.1016/j.automatica.2005.10.015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper obtains an explicit Solution to a finite horizon min-max optimal control problem where the system is linear and discrete-time with control and state constraints, and the cost quadratic; the disturbance is negatively costed, as in the standard H-infinity problem, and is constrained. The cost is minimized over control policies and maximized over disturbance sequences so that the Solution yields a feedback control. It is shown that, under certain conditions, the value function is piecewise quadratic and the optimal control policy piecewise affine, being quadratic and affine, respectively, in polyhedra that partition the domain of the value function. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:371 / 382
页数:12
相关论文
共 39 条
[1]   The explicit linear quadratic regulator for constrained systems [J].
Bemporad, A ;
Morari, M ;
Dua, V ;
Pistikopoulos, EN .
AUTOMATICA, 2002, 38 (01) :3-20
[2]   Min-max control of constrained uncertain discrete-time linear systems [J].
Bemporad, A ;
Borrelli, F ;
Morari, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (09) :1600-1606
[3]  
Bemporad A, 2000, P AMER CONTR CONF, P872, DOI 10.1109/ACC.2000.876624
[4]  
BEMPORAD A, 2000, P 39 IEEE C DEC CONT
[5]   MINIMAX REACHABILITY OF TARGET SETS AND TARGET TUBES [J].
BERTSEKAS, DP ;
RHODES, IB .
AUTOMATICA, 1971, 7 (02) :233-+
[6]   Set invariance in control [J].
Blanchini, F .
AUTOMATICA, 1999, 35 (11) :1747-1767
[7]   Dynamic programming for constrained optimal control of discrete-time linear hybrid systems [J].
Borrelli, F ;
Baotic, M ;
Bemporad, A ;
Morari, M .
AUTOMATICA, 2005, 41 (10) :1709-1721
[8]  
BORRELLI F, 2002, THESIS SWISS FEDERAL
[9]  
Boyd S., 2004, CONVEX OPTIMIZATION
[10]  
CHEN H, 1997, P 1997 AM CONTR C AL