Transcriptome response to nitrogen starvation in rice

被引:111
作者
Cai, Hongmei [1 ,2 ,3 ]
Lu, Yongen [1 ,2 ]
Xie, Weibo [1 ,2 ]
Zhu, Tong [4 ]
Lian, Xingming [1 ,2 ]
机构
[1] Natl Key Lab Crop Genet Improvement, Wuhan, Peoples R China
[2] Natl Ctr Plant Gene Res Wuhan, Wuhan, Peoples R China
[3] Huazhong Agr Univ, Coll Resources & Environm, Microelement Res Ctr, Wuhan 430070, Peoples R China
[4] Syngenta Biotechnol Inc, Res Triangle Pk, NC 27709 USA
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
Affymetrix GeneChip; MicroRNAs; Nitrogen; Rice; Transcription profile; GENOME-WIDE ANALYSIS; GENE-EXPRESSION; SMALL RNAS; PHOSPHATE-STARVATION; PLANT MICRORNA; ARABIDOPSIS-THALIANA; NITRATE RESPONSE; TOMATO ROOTS; STRESS; REVEALS;
D O I
10.1007/s12038-012-9242-2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nitrogen is an essential mineral nutrient required for plant growth and development. Insufficient nitrogen (N) supply triggers extensive physiological and biochemical changes in plants. In this study, we used Affymetrix GeneChip rice genome arrays to analyse the dynamics of rice transcriptome under N starvation. N starvation induced or suppressed transcription of 3518 genes, representing 10.88% of the genome. These changes, mostly transient, affected various cellular metabolic pathways, including stress response, primary and secondary metabolism, molecular transport, regulatory process and organismal development. 462 or 13.1% transcripts for N starvation expressed similarly in root and shoot. Comparative analysis between rice and Arabidopsis identified 73 orthologous groups that responded to N starvation, demonstrated the existence of conserved N stress coupling mechanism among plants. Additional analysis of transcription profiles of microRNAs revealed differential expression of miR399 and miR530 under N starvation, suggesting their potential roles in plant nutrient homeostasis.
引用
收藏
页码:731 / 747
页数:17
相关论文
共 88 条
[1]   Improved scoring of functional groups from gene expression data by decorrelating GO graph structure [J].
Alexa, Adrian ;
Rahnenfuehrer, Joerg ;
Lengauer, Thomas .
BIOINFORMATICS, 2006, 22 (13) :1600-1607
[2]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[3]   pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a MicroRNA399 target gene [J].
Aung, Kyaw ;
Lin, Shu-I ;
Wu, Chia-Chune ;
Huang, Yu-Ting ;
Su, Chun-Lin ;
Chiou, Tzyy-Jen .
PLANT PHYSIOLOGY, 2006, 141 (03) :1000-1011
[4]   Ubiquitylation in plants: a post-genomic look at a post-translational modification [J].
Bachmair, A ;
Novatchkova, M ;
Potuschak, T ;
Eisenhaber, F .
TRENDS IN PLANT SCIENCE, 2001, 6 (10) :463-470
[5]   PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants [J].
Bari, Rajendra ;
Pant, Bikram Datt ;
Stitt, Mark ;
Scheible, Wolf-Ruediger .
PLANT PHYSIOLOGY, 2006, 141 (03) :988-999
[6]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[7]   InParanoid 6:: eukaryotic ortholog clusters with inparalogs [J].
Berglund, Ann-Charlotte ;
Sjolund, Erik ;
Ostlund, Gabriel ;
Sonnhammer, Erik L. L. .
NUCLEIC ACIDS RESEARCH, 2008, 36 :D263-D266
[8]   Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis [J].
Bi, Yong-Mei ;
Wang, Rong-Lin ;
Zhu, Tong ;
Rothstein, Steven J. .
BMC GENOMICS, 2007, 8 (1)
[9]   The small RNA world of plants [J].
Bonnet, Eric ;
Van de Peer, Yves ;
Rouze, Pierre .
NEW PHYTOLOGIST, 2006, 171 (03) :451-468
[10]   Identification and characterization of small RNAs from the phloem of Brassica napus [J].
Buhtz, Anja ;
Springer, Franziska ;
Chappell, Louise ;
Baulcombe, David C. ;
Kehr, Julia .
PLANT JOURNAL, 2008, 53 (05) :739-749